Appendices

Appendix A – Nearshore Sampling Tabulated Exceedances

Table A1 Nearshore *Enterococci* Levels, Exceedance of ANZECC (2000) Recreational Water Quality Guidelines

Location (Date)	Enterococci (MPN/100mL)	Exceed - ANZECC (2000) Recreational Primary Contact – Lower Limit – 35 cfu/100 mL	Exceed – ANZECC (2000) Recreational Secondary Contact – Upper Limit – 100 cfu/100mL	Exceed -ANZECC (2000) Secondary Contact Lower Limit - 230 cfu/100mL	Exceed – ANZECC (2000) Secondary Contact – Upper Limit – 730 cfu/100mL
Point Moore (9/4/2013)	41	Yes	No	No	No
Pages Beach (9/4/2013)	73	Yes	No	No	No
Point Moore (8/1/2014)	54	Yes	No	No	No
Point Moore (15/1/2015)	84	Yes	No	No	No
Pages Beach (15/04/2015)	170	Yes	Yes	No	No
Pages Beach (12/03/2015)	230	Yes	Yes	Yes	No
Pages Beach (3/02/2016)	910	Yes	Yes	Yes	Yes
Pages Beach (19/04/2016)	97	Yes	No	No	No

Table A2 Nearshore *Enterococci* Levels, Exceedance of Criteria that Define NHMRC (2008) Recreational Water Quality Categories

Location (Date)	Enterococci (MPN/100mL)	Exceed – NHMRC Category A – 40 cfu/100 mL	Exceed – NHMRC (2008) Category B lower limit – 41 cfu/100mL	Exceed -NHMRC (2008) Category B - Upper Limit - 200 cfu/100 mL	Exceed – NHMRC (2008) – Category C – 201 cfu/100 mL	Exceed – NHMRC – Category D - >500 cfu/100mL
Point Moore (9/4/2013)	41	Yes	Yes	No	No	No
Pages Beach (9/4/2013)	73	Yes	Yes	No	No	No
Point Moore (8/1/2014)	54	Yes	Yes	No	No	No
Point Moore (15/1/2015)	84	Yes	Yes	No	No	No
Pages Beach (15/04/2015)	170	Yes	Yes	No	No	No
Pages Beach (12/03/2015)	230	Yes	Yes	Yes	No	No
Pages Beach (3/02/2016)	910	Yes	Yes	Yes	Yes	Yes
Pages Beach (19/04/2016)	97	Yes	Yes	No	No	No

Basis of the derivation of the limits for each category provided in Table A2 are provided in Table A3.

Table A3 Basis of derivation of percentile values for determining microbial water quality categories (NHMRC, 2008)

Category	95 th percentile value for intestinal enterococci/ I 00 mL (rounded values)	Basis of derivation	Estimation of probability
A	≤40	This value is below the NOAEL in most epidemiological studies.	GI illness risk: < 1% AFRI risk: < 0.3% The upper 95th percentile value of 40/100 mL relates to an average probability of less than one case of gastroenteritis in every 100 exposures. The AFRI burden would be negligible.
В	41–200	The 200/100 mL value is above the threshold of illness transmission reported in most epidemiological studies that have attempted to define a NOAEL or LOAEL for Gl illness and AFRI.	GI illness risk: I-5% AFRI risk: 0.3-1.9% The upper 95 th percentile value of 200/100 mL relates to an average probability of one case of gastroenteritis in 20 exposures. The AFRI illness rate would be 19 per 1000 exposures or approximately 1 in 50 exposures.
С	201–500	This represents a substantial elevation in the probability of all adverse health outcomes for which dose—response data are available.	GI illness risk: 5–10% AFRI risk: 1.9–3.9% This range of 95 th percentile values represents a probability of 1 in 20 to 1 in 10 risk of gastroenteritis for a single exposure. Exposures in this category also suggest a risk of AFRI in the range of 19–39 per 1000 exposures or a range of approximately 1 in 50 to 1 in 25 exposures.
D	> 501	Above this level there may be a significant risk of high levels of illness transmission.	GI illness risk: > 10% AFRI risk: > 3.9% There is a greater than 10% chance of illness per single exposure. The AFRI illness rate at the guideline value of 500 enterococci per 100 mL would be 39 per 1000 exposures or approximately 1 in 25 exposures.

Appendix B – Point Moore Inundation and Coastal Processes Study Summary Report

creating better coasts and ports

Point Moore Inundation & Coastal Processes Study

In Western Australia, coastal development is guided by State Planning Policy 2.6: The State Coastal Planning Policy (SPP2.6). This policy outlines the general requirements for new development on the coastline in terms of avoiding or managing risks caused by coastal inundation (flooding) or coastal erosion.

SPP2.6 outlines that new development should be safe from coastal inundation caused by an extreme inundation event that has a 0.2% chance of occurring each year. In other words, this event would occur once every 500 years on average. Another way to say this is that the event would have an Average Recurrence Interval (abbreviated to ARI) of 500 years.

For coastal erosion, SPP2.6 states that new development should be safe from an erosion event that has a 1% chance of occurring each year (or would occur once every 100 years on average – i.e. the 100 year ARI event).

In addition to these storm events, the potential impacts of sea level rise and ongoing changes to the shoreline need to be considered when determining appropriate areas for new development.

While the SPP2.6 guidelines relate mainly to the requirements for new development, where existing development does not meet the guidelines there is a general requirement to take action in order to reduce any risks to acceptable levels.

In 2015 a study was completed in order to understand which areas of Point Moore could be impacted by coastal inundation and erosion. This study was completed in accordance with the requirements of SPP2.6. The study involved detailed modelling and assessment of the following items:

- Detailed cyclone storm surge modelling to determine the potential inundation caused by severe cyclones.
- Analysis of available water level records to determine the potential inundation caused by non-cyclonic events.
- Modelling the potential beach and dune erosion caused by severe events.
- Assessment of historical and potential future shoreline movement caused by the action of natural coastal processes.
- Assessment of the effects of potential sea level rise (assuming 0.9 metres of sea level rise by year 2110 as required by SPP2.6) on the coastal inundation and erosion.

The results of this study are summarised on the attached plans. Further details and description of these plans are provided overleaf.

The attached plans show the areas that could be impacted by coastal erosion or inundation for the Present Day, as well as the years 2030, 2070 and 2110. A description of what these plans mean, and how to read them, is provided below.

Coastal Processes Allowance Plan

The Coastal Processes Allowance Plan shows 4 different coloured lines. Each of these lines represents the extent of possible impact of coastal erosion over each planning horizon. The locations of these lines have been determined in accordance with the requirements of SPP2.6. As an example, anything on the ocean side of the **red** line could be vulnerable to coastal erosion by the year 2110.

Coastal Inundation Mapping Plans

The Inundation Mapping Plans show areas that could be inundated by different events for each of the timeframes outlined above. Each of the different plots represents a different timeframe. The different colours represent the potential areas of inundation associated with different event severities. On each of the plots, the area that is shaded **purple** represents the area that would be inundated during the 20 year ARI event; the area that is shaded **blue** represents the <u>additional</u> area that would be inundated during the 100 year ARI event; and the area that is shaded **green** represents the <u>additional</u> area that could be inundated by the 500 year ARI event.

The difference between the plots (as each plot represents a different time), is caused by the potential impact of sea level rise.

Coastal Inundation Depth Plans

The Inundation Depth Plans have been prepared to show the potential depth of inundation caused by the 20, 100 and 500 year ARI events at the year 2030, as well as the 500 year ARI event in 2110. The different colours on these plans show the different inundation depths, as indicated on the legend. For example, anything that is shaded **pink** on the plan would have an inundation depth of between 2.0 and 2.5 metres.

Combined Coastal Vulnerability Mapping Plans

The Combined Coastal Vulnerability Mapping Plans identify the areas that would be impacted by the 500 year ARI inundation event and/or the Coastal Processes Allowance for each timeframe. For example, on the plan depicting the year 2030, the shading depicts the area that would be subject to inundation during the 500 year ARI event as well as the area that would be potentially vulnerable to coastal erosion by 2030 (as shown on the Coastal Processes Allowance Plan).

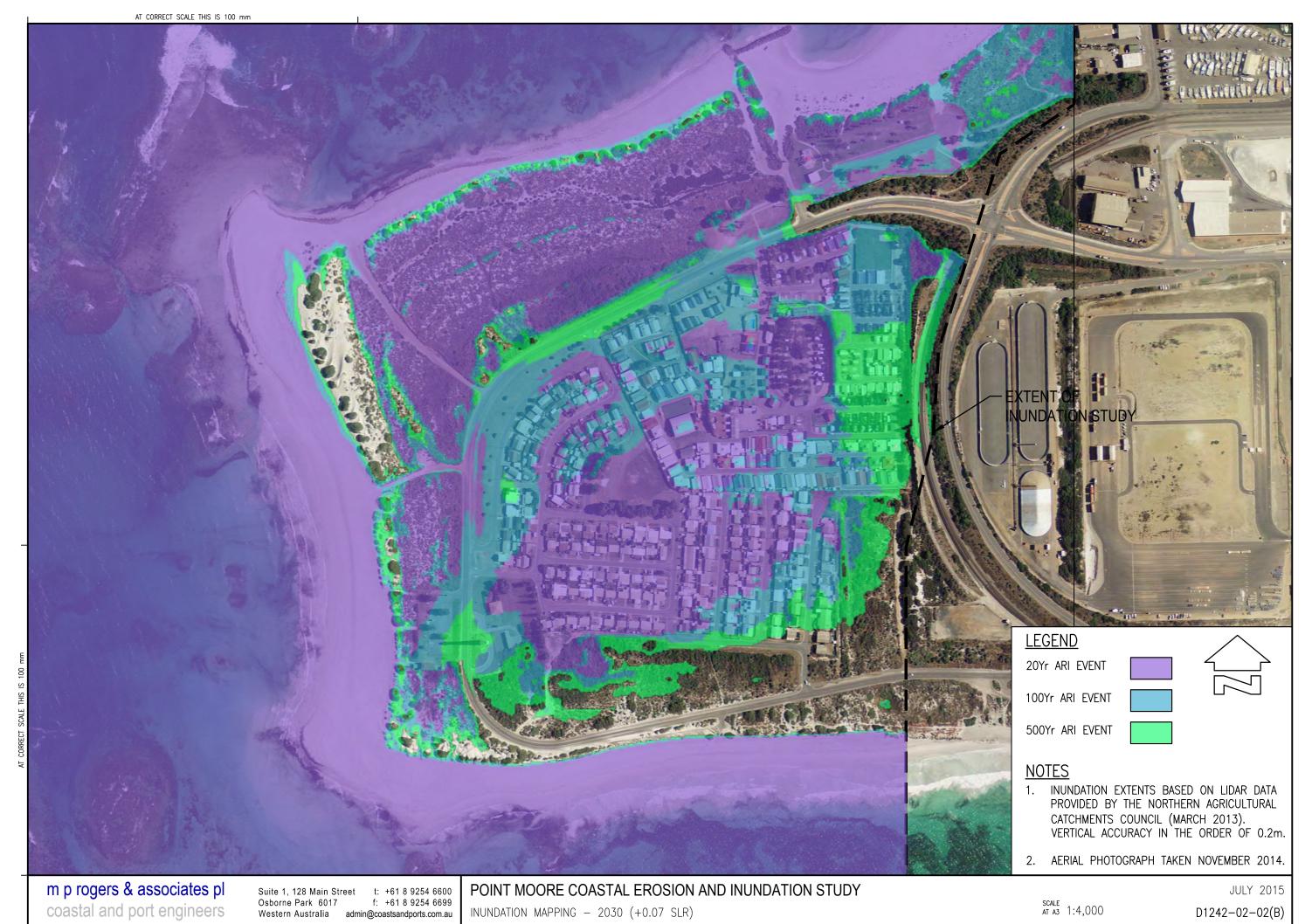
The significance of these combined plans is that the shaded areas represent the areas that would not be developable under SPP2.6 for each of the different timeframes.

m p rogers & associates pl

www.coastsandports.com.au

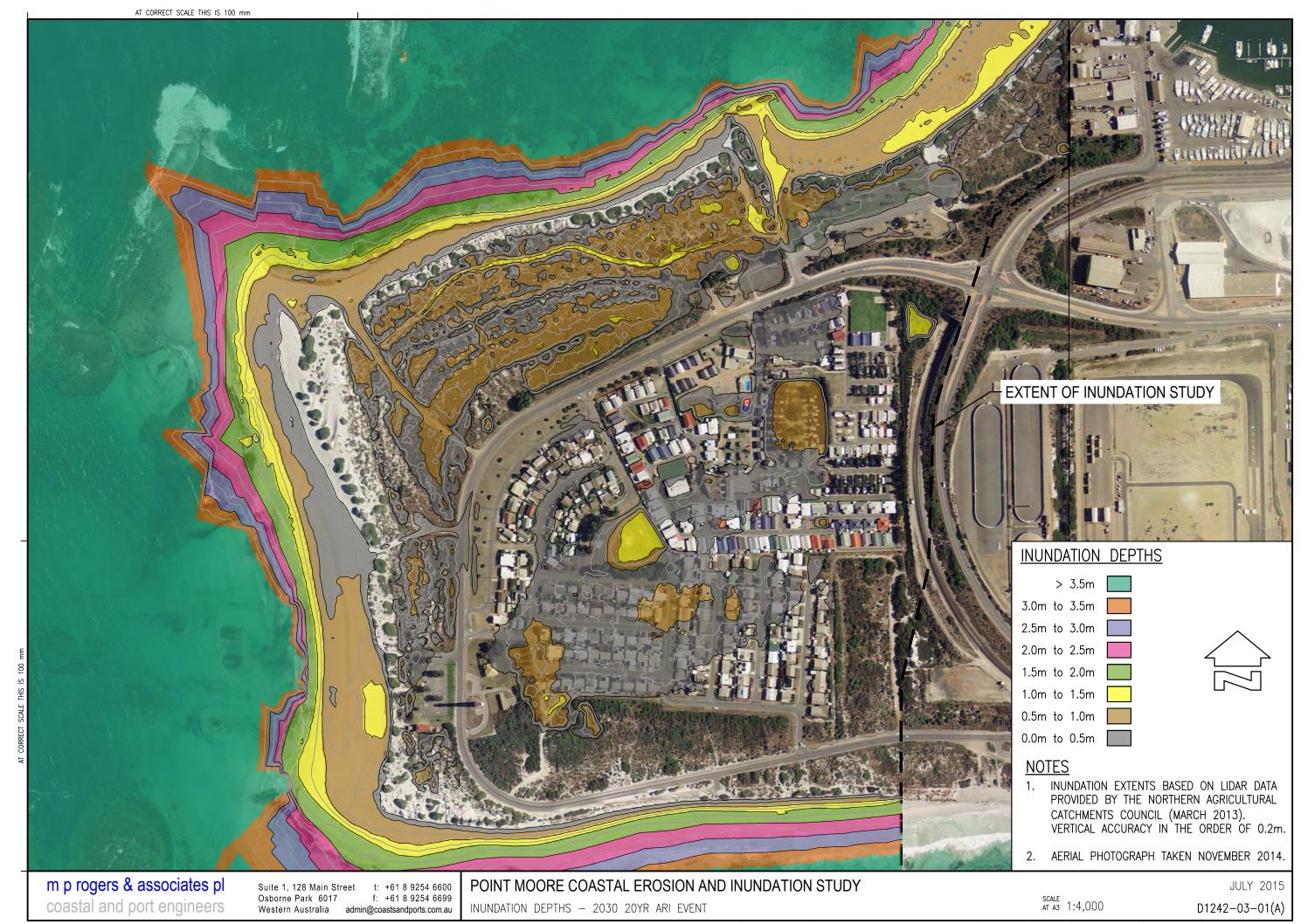
m p rogers & associates pl coastal and port engineers

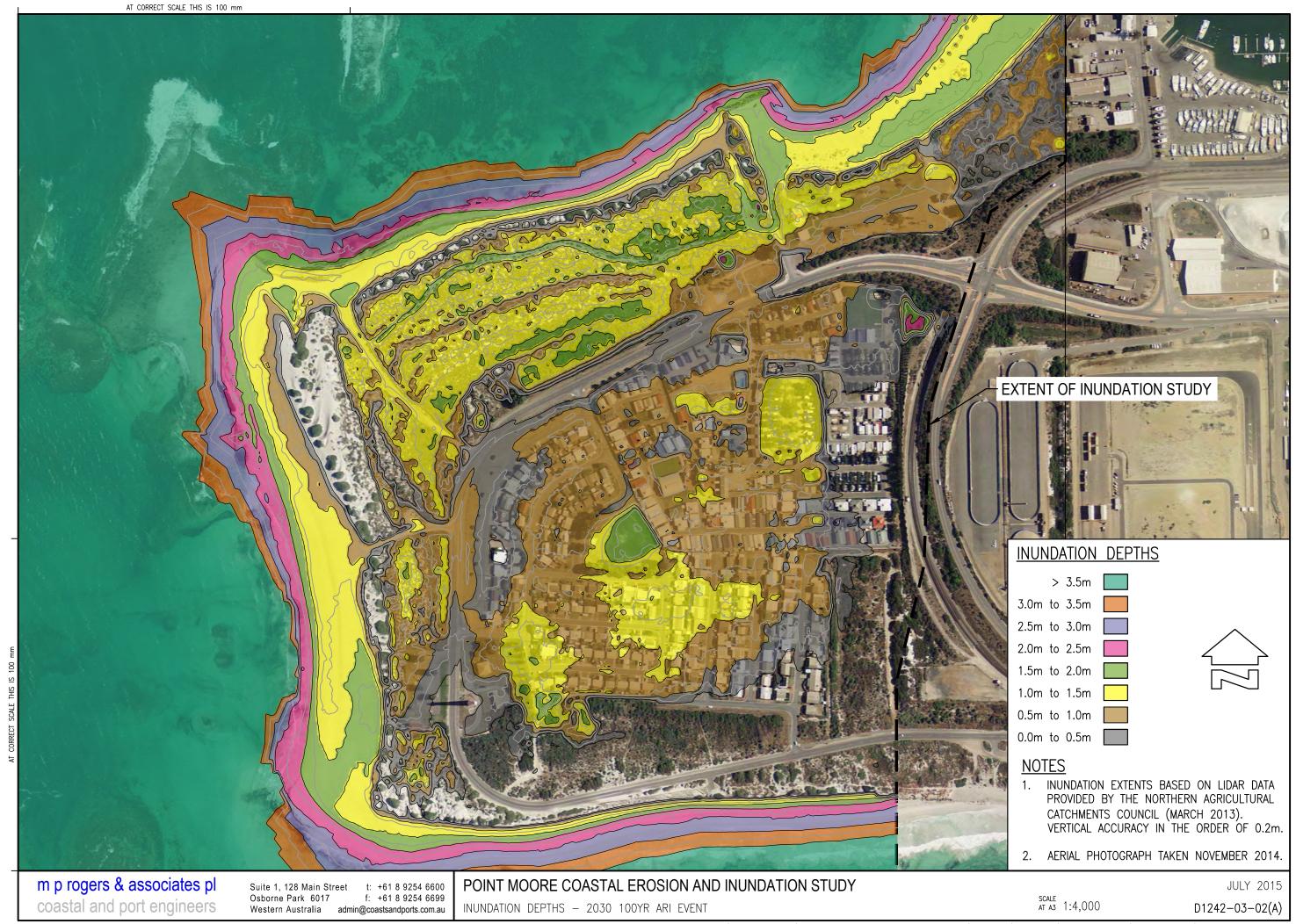
Suite 1, 128 Main Street Osborne Park 6017 Western Australia admi

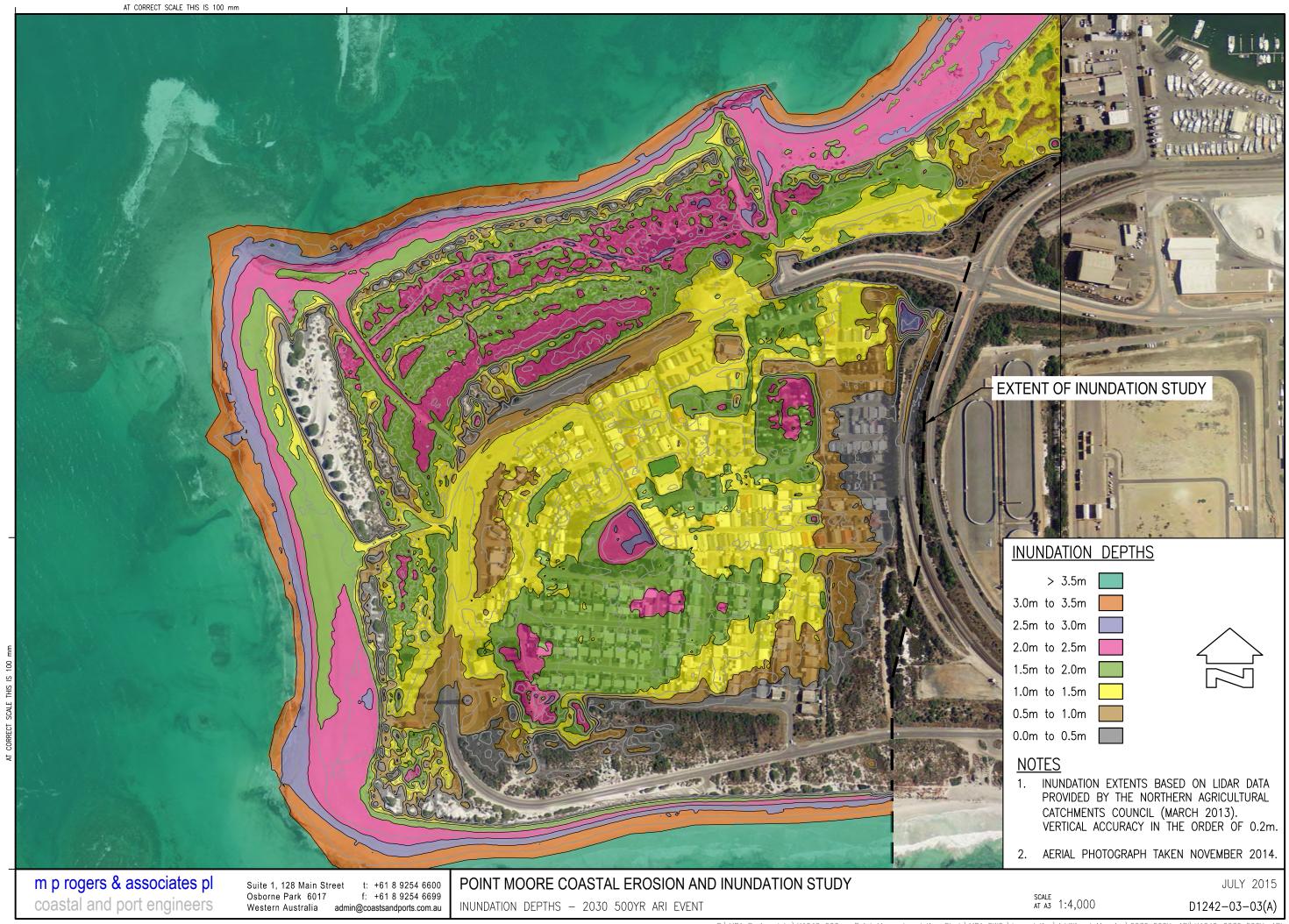

treet t: +61 8 9254 6600 f: +61 8 9254 6699 admin@coastsandports.com.au

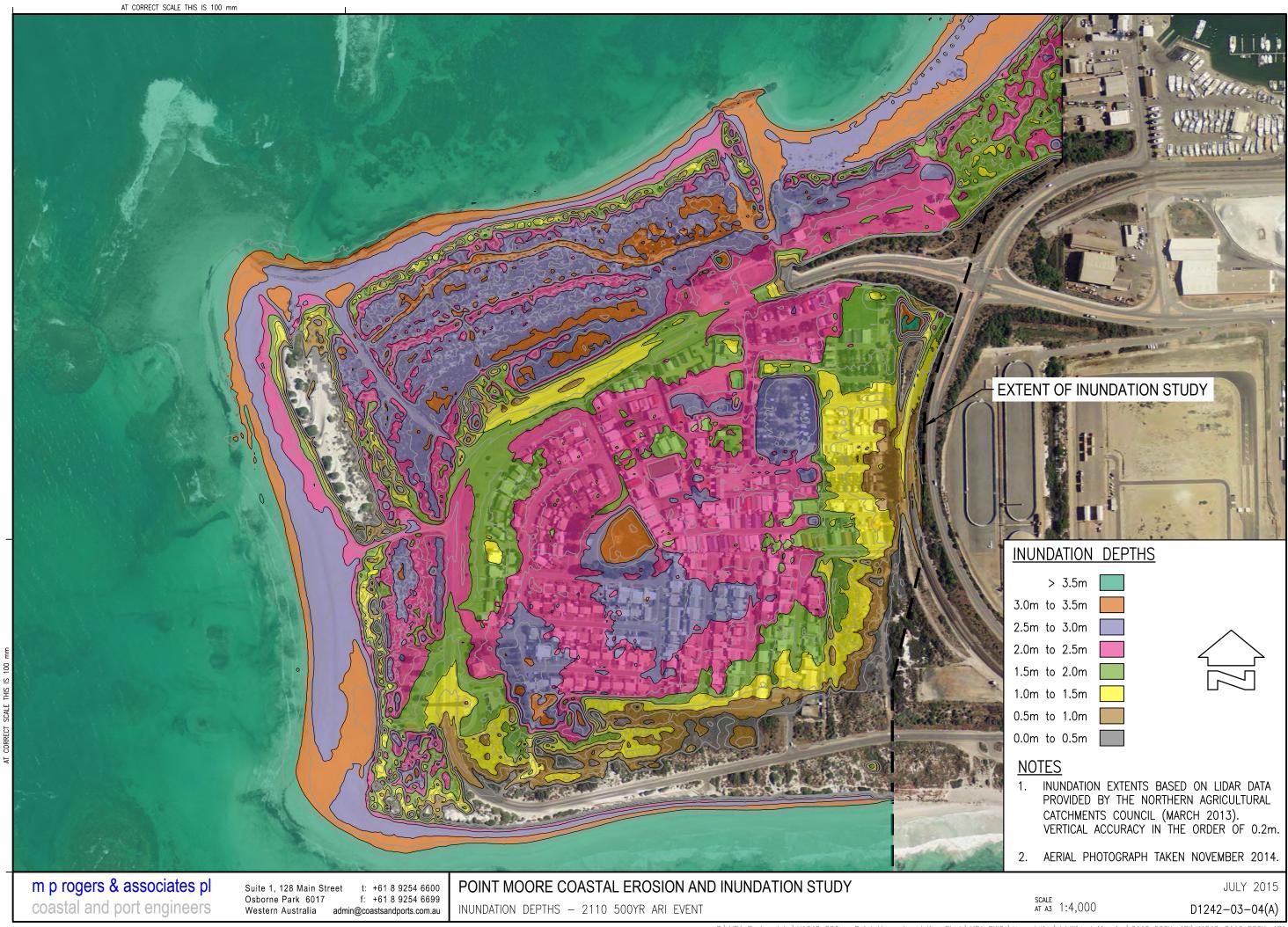
COASTAL PROCESSES ALLOWANCES

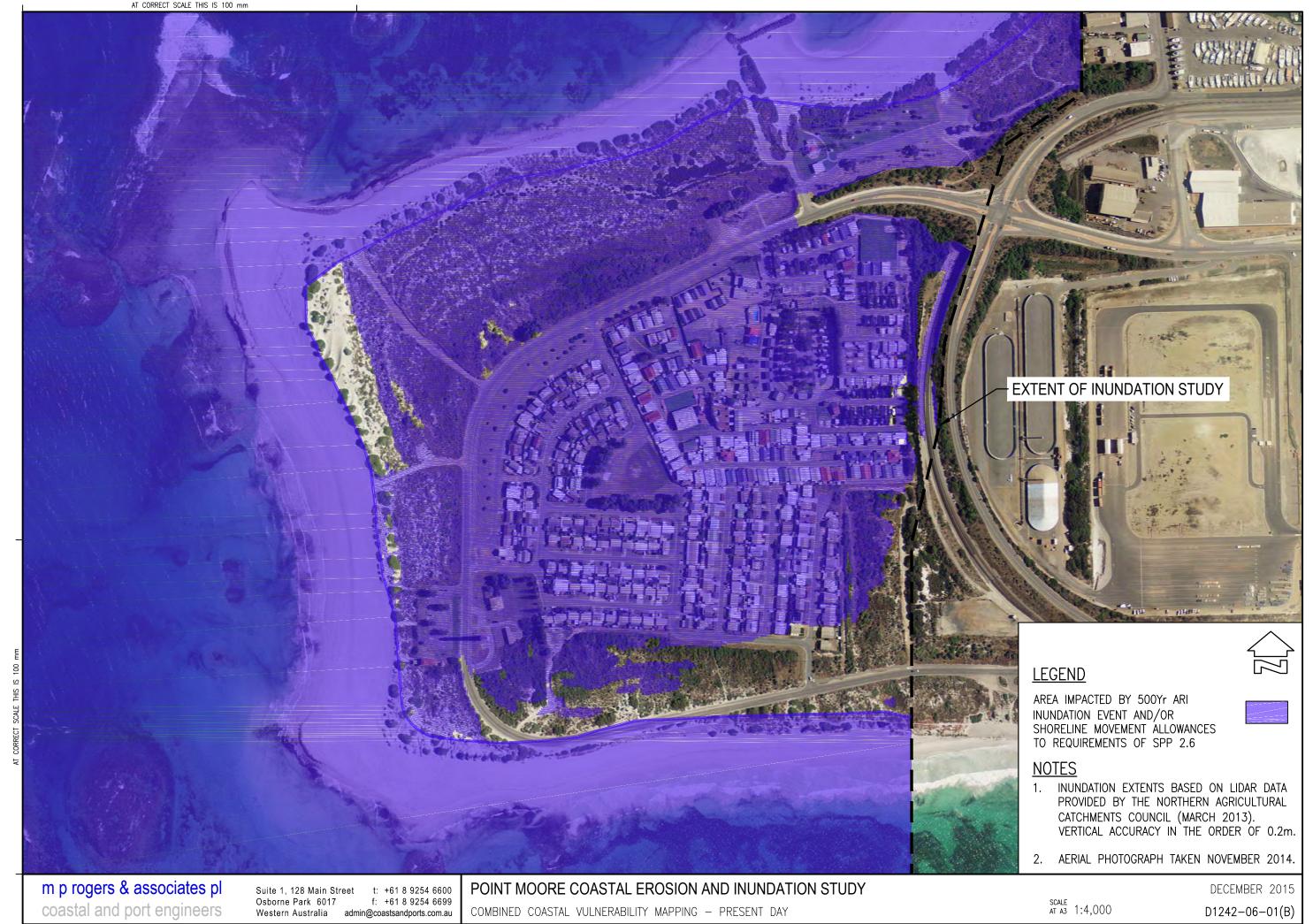
SCALE AT A3 1:4,000

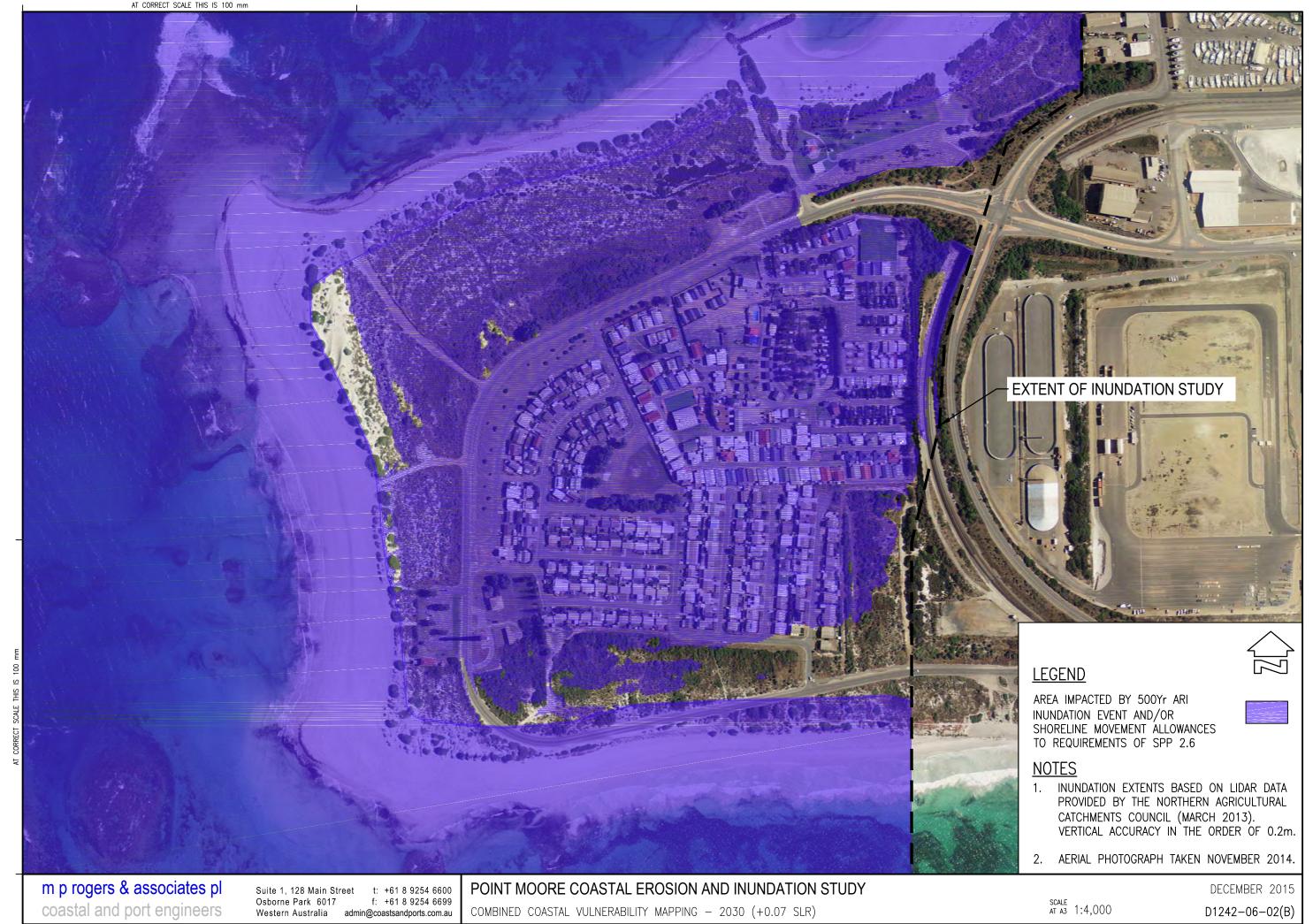

D1242-01-02(D)

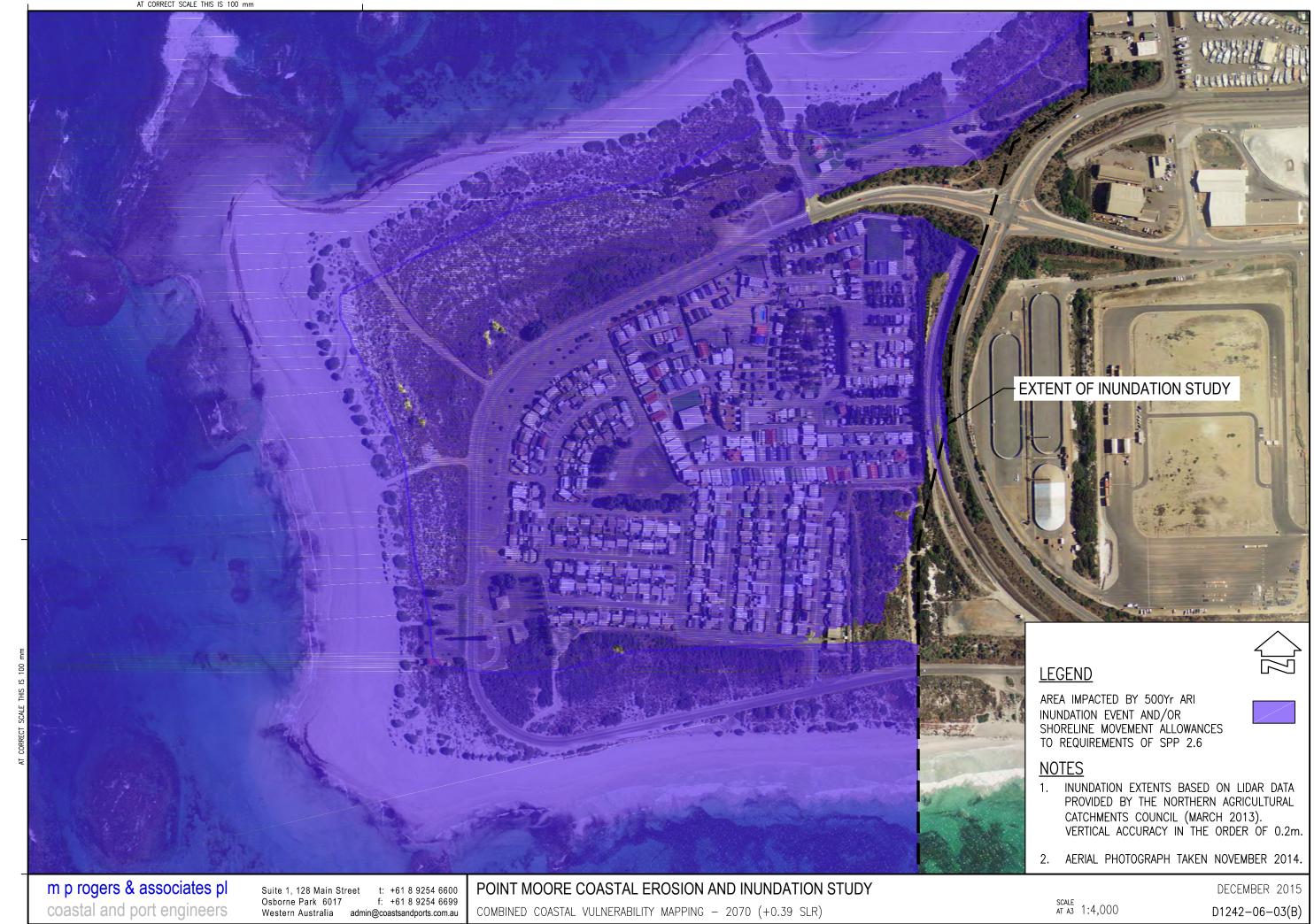












Appendix C – Groundwater Monitoring Well Logs

Bore Log

Groundwater Well: MW1
Page: 1 of 3

Client City of Greater Geraldton Drill Co: Harrington drilling Easting 263, 938 Project Point Moore ROETDS Driller: James Harrington Northing 6,814,127				
Project Point Moore ROETDS Driller: James Harrington Northing 6,814,127				
Job No. 6134536 Rig Type: HD1 Grid Ref				
	p of casing, mAHD)	1		
Date 15/08/2016 Diameter (mm): 50 Logged by S Petts	Checked b	y A. Nagle		
Depth Drilling Sample ID Water Well Details Graphic Lithological Description Consistr	tency Moisture	CONTAMINANT INDICATORS		
(metres) Method Soil Type (Classification Group Symbol);				
Log Particle ; Size; Colour;		Odours, staining, waste materials,		
Secondary/Minor Component		separate phase, liquids, imported fill, ash.		
O.1 MW1_0.5 MW1_0.5	D	No odour, no signs of contamination		
MW1_0.5 SM Fine Fine Sand Brown Sub-angular Layer Quartz Weakly Cemented Minor loam Loam (gravel)				
Layer Quartz Weakly Cemented				
्रिक्ष क्षित्र क्ष		No sampling beyond 3 m, inadequate		
- 0.5	D	sample amount.		
-1.0 MW1_1.0				
	M	No odours or stains		
- 1.5 MW1_1.5		No odours or stains		
2.0 MW1_2.0				
	M	No odours or stains		
ಕ್ಷ Coarse Coarse Sand White Sub-angular				
[G A S A S A S A S A S A S A S A S A S A				
Goarse Coarse Sand White Sub-angular Layer Quartz Weakly Cemented				
2.5 MW1_2.5 V 0 0 0				
	W	No odours or stains		
-3.0 MW1_3.0				
	W	No odours or stains		
MW1 3.5	w	No odours or stains		
- 3.5 WW1_3.3				
Tag Ins I I I I I I I I I I I I I I I I I I	w	No odours or stains		
-4.0				
The last last last last last last last last	w	No odours or stains		
- 4.5	-			
rs I I I I I I I I I I I I I I I I I I I	w	No odours or stains		
-5.0 "S				
Ins I I I I I I I I I I I I I I I I I I	w	No odours or stains		
- 5.5 I ^{ns}	V	No ododi 3 Oi stallis		
	147	No adours or stains		
	W	No odours or stains		

Client Project Job No. Location	City of Grea Point Moore 6134536 Point Moore			Drill Co: Driller: Rig Type: Total Depth:	Harrington E James Harrin HD1	ngton	Easting Northing Grid Ref Elevation	263,709 6,813,860 2.151 (top of casi	ing, m∆HD\	
Date	15/08/201			Diameter (mm):	50		Logged by	S Petts	Checked by	A. Nagle
Depth (metres)	Drilling Method	Sample ID	Water	Well Details	Graphic Log	Lithological Description Soil Type (Classification Group Symbol Particle; Size; Colour Secondary/		Consistency	Moisture	CONTAMINANT INDICATORS Odours, staining, waste materials
				± 4 3	000000000000000000000000000000000000000	Minor Component				separate phase, liquids, imported fill, ash.
- 0.1 - - - 0.5		MW2_0.5 QC01 QC02		Sealed Grout			Sub-angular y Cemented		D D	No odours or stains No odours or stains
- 1.0 -		MW2_1.0					Sub-angular y Less Loam		М	No odours or stains
1.5		MW2_1.5								No odours or stains
- 2.0 - - -		MW2_2.0	*	Slotted Screen			Sub-angular y Cemented		М	No odours or stains No odours or stains
- 2.5 - - -		MW2_2.5		Slotted					w	No odours or stains
-3.0 - -	-	no sample retreivable							W	
- 3.5 - -		MW2_3.5							W	No odours or stains
-4.0 - -		MW2_4.0					Sub-angular y Cemented		W	No odours or stains
- 4.5 -		MW2_4.5		Source Screen Management of the Control of the Cont					W	No odours or stains
5.0 _ -		MW2_5.0							W	No odours or stains No odours or stains
5.5		MW2_5.5							w	
L		MW2_6.0		♦ 🔯 🔯 🔻					W	No odours or stains

Bore Log ENVIRONMENTAL

Groundwater Well: MW3
Page: 3 of 3

Client	City of Grea	ter Geraldton		Drill Co:	Harrington Dri	ling	Easting	263,934		
Project	Point Moor			Driller:	James Harringt		Northing	6,813,674		
Job No.	6134536			Rig Type:	HD1		Grid Ref	-		
Location	Point Moor	e		Total Depth:	6m		Elevation	3.009 (top of cas	ing, mAHD)	
Date	15/08/201			Diameter (mm):	50		Logged by	S Petts	Checked by	A. Nagle
Depth	Drilling	Sample ID	Water	Well Details	Graphic	Lithological Description		Consistency	Moisture	CONTAMINANT INDICATORS
(metres)	Method				Log	Soil Type (Classification Group Sy	mbol);			Odours, staining, waste materials
						Particle; Size; Colour;				
					a	Secondary/Minor Component				separate phase, liquids, imported fill, ash.
0.1				1 : . ■ ■ ■	teo	SP			D	
L				Sealed Grout	Hash Mounte	Fine Fine Sand Bro	own Sub-angular			No odours or stains
-				₹ ※ 	Σ		akly Cemented			
-				I∄ ₩ ≣ ₩ .	las	very minor loam			_	
0.5		MW3_0.5 QC03			•				D	No adama as status
-		QC04								No odours or stains
-		QC04								
-										
-		MW3_1.0			10000000					
 1.0		101003_1.0							М	No odours or stains
-									IVI	INO OUDUIS OF Stairis
-										
ļ ,										
١		MW3_1.5								
- 1.5		_								No odours or stains
Ī										
-					10000000					
-										
		MW3_2.0								
2.0						SP			M	No odours or stains
						Fine Medium Sand Wh	ite Sub-angular			
_					10000000	Layer Quartz We	akly Cemented			
_										
- 2.5										
_ 2.5		MW3_2.5							W	No odours or stains
L										
_					10000000					
-										
-3.0		MW3_3.0	~							No odours or stains
-									W	
_										
-					10000000					
-		NAVA 2 5							w	
- 3.5		MW3_3.5							vv	No odours or stains
-										INO OUDUIS OF Stairis
F										
†										
1		MW3_4.0							w	
-4.0		1 - 1			222222	SW		1		No odours or stains
_					100000000000000000000000000000000000000		y Sub-angular			
Ī							akly Cemented			
Γ					888888	shell grit	•			
[1 5		MW3_4.5				-			w	
- 4.5		1 -								No odours or stains
L					100000000000000000000000000000000000000					
L					3000000					
L					100000000000000000000000000000000000000					
- 5.0		MW3_5.0						_	w	
L ""]					SM				No odours or stains
L							ey Sub-angular			
L						Layer Quartz				
L		1				1			l	<u> </u>
- 5.5		MW3_5.5							W	No odours or stains
L										
L										
F										
F		NAVA C C						4		
	1	MW3_6.0				Limestone Lay	er		W	

Appendix D – Groundwater Quality Field Data Sheets

Client: Co	GG									BORE	ID: N	1W1	
Project: F	oint Moore	Groundy	vater Ass	essment						Job No	.: 613	4772	2
Location:	Marine Te	rrace	(Casing d	iameter:				50 mm	Total D	epth:	: 5.99	9 m
BORE CO	ONSTRUCT	ΓΙΟΝ											
Head-	▼ Flush	□Monu	ment					Datu				Da	tum Elev.:2.608m
works					Casing	Locke	ed	Point	t Monum		ner ising		Local ⊠ AHD
PURCING	G DETAILS	3											
Method:		Date: 20	116				I Ir	nderte	ken By: S.P	atte	Flox	v Do	te: 0.005 L/S
PID readi	ng. N/A		Column: 3	.57 m					ge Vol. ¹ : N/				ol. Purged:
r iD reaui	ing: IN/A	Time			Dom	oth to				A			DNAPL (m)
		Time				APL (m)	De	ւրւու ա	water (m)		Бер	ui to	DNAFL (III)
Start		0830			-		2.3	36			-		
Finish		0930			-		2.3	36			-		
PURGING MEASUREMENTS ²													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
1	5	20,050	18,085	13.03	20.2	12.1	7	'.31	98.45	9.20	.20 -16		Colourless, minor
2	10	19,116	17,708	56.2	21.1	11.5	7	'.33	94.20	6.14	-1	199	sulphur type odour
3	12	18,647	17,451	51.2	21.5	11.2	7	'.34	86.14	5.59	-2	202	
4	15	17,233	18,439	42.1	21.6	11.0	7	'.35	55.64	5.03	-2	207	
5	17	17,910	16,782	45.3	21.7	10.7	7	'.36	50.96	4.60	-2	210	
		+/-3.0%			+/-3.0%		+,	/- 0.1	+/-10%	+/-3.0%		/- 10 nV	
Comment	s (e.g. cond	ition of he	adworks,	colour,	odour):	<u> </u>				_			
SAMPLI	NG DETAI	LS			San	nple ID: M	W1						
Date		Time:			Und	ertaken By	: S P	Petts					
PID readin	g: N/A	Depth to	LNAPL:	N/A	Dep	th to Water	: 2.	42m	Depth to Di	NAPL: N	N/A		
Flow Rate:	Flow Rate: 0.005 L/s Vol. Removed: 5L Sampling Method: Low Flow												
Temp.: 21.	7 °C	DO: 4.60) mg/L		pH:	7.36	Sı	pec. Co	nd: 17,910 uS	S/cm	ORI	P: -2	10 mV
DO: 50.9%	Sat	Salinity:	10.7 ppt		TDS	S: 45.3 ppt							
Comment	s (e.g. conta	iners, filt	ration): (QC01 - E	Blind, QC	C02 – Split,	, QC	203 – R	linsate, QC0	4 – Field	l Blan	k	
CoC Num	ber:240820	15			Che	cked by: S	Steve	en Pett	S	Date	e: 24/0	08/20	016

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m. Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

²

Client: CO	Client: CGG Project: Point Moore Groundwater Assessment Job No.: 6134772													
Project: P	oint Moor	e Ground	lwater As	sessment	t				Job No	.: 613	4772	2		
Location:	Captains (Cres	(Casing di	amete	er:		50 mm	Total D	epth:	6.10) m		
BORE CO	NSTRUC	TION												
Head-	×	□Monu	ment				l l	tum 🗷 Cov			Da	tum Elev.:2.151m		
works	Flush				Casi	ng Locke	Poi	int Monun		ner ising		Local 🗷 AHD		
PURGING	DETAIL	.S								Ü				
Method: L	ow Flow	Date: 24	1/08/2016				Undert	taken By: S.P	etts	Flov	v Ra	te: 0.008 L/S		
PID readii	ng: N/A	Water (Column: 4	l.24 m			Req Pu	ırge Vol. 1: N	'A	Actu	ual V	ol. Purged:		
		Time				epth to NAPL (m)	Depth	to water (m)		Dept	th to	DNAPL (m)		
Start		1000			-		1.78			-				
Finish		1100			-		1.78			-				
PURGING	G MEASU	REMEN	ΓS ²											
Vol. Purged (L)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
1	2	15,159	12,459	234.4	15.6	5 8.88	8.42	86.6	86.6 8.99		164	Colourless, minor		
2	4	2,637	2,274	755.3	17.8	3 1.37	8.34	61.7	6.1	-1	62	H ₂ S odour		
3	6	2,970	3,283	64.87	20.2	2 1.73	7.47	29.6	2.8	-2	205			
4	8	3,408	3,107	72.1	20.4	1.81	7.37	24.5	2.3	-2	206			
5	10	3,419	3,125	74.0	20.5	1.81	7.43	22.1	2.1	-207				
6	12	3,450	3,128	74.2	20.6	5 1.81	7.48	22.5	2.2	-2	207			
7	14	3,500	3,150	75.1	20.6	5 1.81	7.45	22.2	2.1	-2	206			
		+/-3.0%			+/-3.0	%	+/- 0.1	+/-10%	+/-3.0%		/- 10 nV			
Comments	s (e.g. cond	lition of h	eadwork	s, colour	, odot	ır):			•					
SAMPLIN	G DETA	ILS			S	ample ID: M	IW2							
Date: 24/08	/2016	Time: 11	:00		U	ndertaken By	: S Petts							
PID reading: N/A Depth to LNAPL: N/A Depth to Water: 1.86 m Depth to DNAPL: N/A														
Flow Rate: 0.008 L/s Vol. Removed: 7 L Sampling Method: Low Flow														
Temp.: 21.7	7 °C	DO: 2.08	8 mg/L		p]	H: 7.43	Spec. 0	C ond: 3,419 uS	/cm	ORF	P: -2	07 mV		
DO: 22.1 %	Sat	Salinity:	1.81 ppt		Т	DS: 2.22 ppt								
Comments	s (e.g. cont	ainers, fil	tration):											
CoC Num	her:24082	015				hecked by: S	Steven Pe	etts	Date	e: 24/0	08/20)16		

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

² Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Client: CO	Client: CGG BORE ID: MW3 Project: Point Moore Groundwater Assessment Job No.: 6134772														
Project: P	oint Moor	e Ground	water As	sessment						Job No	.: 613	4772	2		
Location:	Astrolabe	Ln	(Casing di	amete	er:			50 mm	Total D	epth:	5.84	4 m		
BORE CO	NSTRUC	TION													
Head-	×	□Monuı	nent					Datu				Da	tum Elev.:3.009m		
works	Flush				Casi	ng Locke	d	Point	t Monum		ner ising		Local ⊠ AHD		
PURGINO	DETAIL	C									51115				
Method: I			-/08/2016				IIn	dortal	ken By: S.P	otte	Flor	v Do	te: 0.004 L/S		
			Column: 3	13 m											
PID readi	ng: N/A			.10 m					ge Vol. 1: N/	A			ol. Purged:		
		Time				epth to NAPL (m)	De	pth to	water (m)		Dep	th to	DNAPL (m)		
Start		1100			-		2.6	7			1				
Finish		1200			-		2.6	7			-				
PURGINO	G MEASU	REMENT	TS ²												
Vol. Purged (L)	Elapsed Time (min)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
1	4	2,333	2,259	41.3	23.3	23.3 1.21		.84	22.6	2.1	-1	192	Minor		
2	8	2,415	2,300	42.0	23.4	23.4 1.21		.83	22.7	2.1	-1	193	particulates, colourless, H ₂ S		
3	12	2,336	2,261	36.4	23.3	3 1.21	7.	.81	22.6	2.05	-1	196	odour		
4	16	2,314	2,248	33.1	23.4	1.20	7	.83	17.9	1.69	-204				
5	20	2,219	2,233	34.9	23.7	7 1.19	7.	.83	14.2	1.28	-2	211			
		+/-3.0%			+/-3.0	%	+/-	- 0.1	+/-10%	+/-3.0%		'- 10 nV			
Comments	s (e.g. cond	lition of h	eadwork	s, colour	odou	ır):									
SAMPLIN	IG DETA	ILS			S	ample ID: M	W3								
Date: 24/08	/2016	Time: 11	45		U	ndertaken By	: S Pe	etts	1						
PID reading	g: N/A	Depth to	LNAPL: N	N/A	D	epth to Water	: 2.7	1 m	Depth to D	NAPL: N	/A				
Flow Rate:	0.04 L/s	Vol. Rem	oved: 5L		S	ampling Meth	od: L	ow Flo)W		1				
Temp.: 23.7		DO: 1.28			p]	H: 7.83	Sp	ec. Co	nd: 2,219 uS/	cm	ORF	P: -2	11 mV		
DO: 14.2%		Salinity:			T	DS: 34.9 ppt									
CoC Num			tration):		1 ^	hookad by	٠.	D.		 :	n• 24/(00.72	21.6		

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

² Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Client: CO	GG									BORE	ID: Sl	HP8	
Project: P	oint Mo	ore Ground	lwater As	sessmen	t					Job No	.: 613	4772	}
Location:	Coxswa	in Park	C	Casing di	ameter	:			50 mm	Total D	epth:	4.72	2 m
BORE CO	NSTRU	UCTION											
Head-		■Monume	nt		×			Datu				Dat	tum Elev.:2.427m
works	Flush				Casing	g Locke	d	Point	Monum		ner sing		Local 🗷 AHD
PURGING	DETA	ILS									8		
Method: L	ow Flov	w Date: 24	1/08/2016				Un	dertak	en By: S.Po	etts	Flow	Ra	te: 0.005 L/S
PID readii	ng: N/A	Water (Column: 2	.42 m			Rec	q Purg	ge Vol. 1: N/	A	Actu	ıal V	ol. Purged:
		Time				pth to APL (m)	Dej	pth to	water (m)		Dept	th to	DNAPL (m)
Start		1230			-		2.1				-		
Finish		1330			-		2.1				ı		
PURGING	S MEAS	SUREMEN'	ΓS ²		•								
Vol. Purged (L)	Vol. Elapsed Spec. Act. TDS Temp. Salinity pH DO %Sat DO (mg/L) (mV												
1	5	6,410	5,917	6.99	20.98	3.54	7.	.72	31.2	3.2	-2	21	Colourless, H ₂ S
2	7	6,497	5,987	5.58	20.95	3.57	7.	.72	30.2	3.1	-2	22	odour
3	9	6,587	5,974	5.01	20.91	3.58	7.	.73	30.1	3.1	-2	21	
4	11	6,588	5,879	5.01	20.91	3.58	7.	.73	29.3		01 -221		
5	13	6,496	5,988	4.22	20.91	3.59	7.	.73	29.3	3.01	-2	21	
		+/-3.0%			+/-3.0%		+/-	- 0.1	+/-10%	+/-3.0%		- 10 1V	
Comments	s (e.g. co	ondition of l	eadworks	s, colour	, odour):							
SAMPLIN	G DET	AILS			Sai	nple ID: SI	HP8						
Date: 24/08	/2016	Time: 13:20)		Une	dertaken By	S Pe	etts					
PID reading	g: N/A	Depth to LN	NAPL: N/A	1	Dep	oth to Water	: 2.3	m	Depth to D	NAPL: N	N/A		
Flow Rate:	-L/s	Vol. Remov	ed: 5 L		Sar	npling Meth	od: L	ow Flo	w				
Temp.: 20.9	°C	DO: 29.32	mg/L		pН	: 7.73	Sp	ec. Cor	nd: 6,696 uS/	cm	ORP	: -22	21 mV
DO: 29.3%	Sat	Salinity: 3.5	9 ppt		TD	S: 24.80 ppt							
Comments	s (e.g. co	ontainers, fi	tration):										
CoC Num	ber:240	82015			Ch	ecked by: S	teve	n Petts		Date	e: 24/0)8/20)16

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m. Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures

Client: CO	GG .											BOI	RE II): MW1			
Project: P	oint Moor	e Gro	undwa	ater Asse	ssment							Job	No.:	6134772	i		
Location:	Marine T	errace			Casing d	iame	eter:		Locatio	on: Ma	arine	Tota	al De _l	oth:	5.93		
BORE CO	NSTRUC	TION															
	⊠ Flush	□Mon	umen	t □ Ca] ocke	ed			□ Co Monu		☑ Inn Casin		Datum Elev.:	m	□ L A	ocal .HD
PURGING	S DETAIL	_L S															
Method:	Low Fl Pump	ow	Dat	te: 2016					ndertak Petts	en By:	1		Flov	v Rate:			L/s
PID readi	ng: N/A	Appm	Wa	ter Colu	nn:		3.5m	Re	eq Purg	e Vol.	1:	-L	Actı	ıal Vol.	Purged:		-L
	Time		•	Depth t	o LNAPI	_ (m))	De	epth to v	water	(m)		Dep	th to DN	NAPL (m)		
Start				ı													
Finish 10:15 - 2.43													1				
PURGING MEASUREMENTS ²																	
Vol. Purged (L) Elapsed Time (min) EC (mS/cm) Temp. (°C) Salinity (ppm) pH DO %Sat DO (ppm) Eh (mV) Comments – Turbidity, Color Odour, etc.														olour,			
1	10		31.6	5 2	28.1		-		6.94				8	-282	SO ₂ odour, colourless,		
2	14		7 2	28.1	-		6.97 -				0.3 -			ourles: nded so			
3	18		31.7	7 2	28.1		-		6.96 -				6	-276			
4	23		31.6	5 2	28.3		-		6.93	0.4	1	-273					
			+/-3.0	% +/	-3.0%				+/- 0.1	+/-	10%	+/-3.0)%	+/- 10 mV	,		
Comments	s (e.g. con	dition	of hea	dworks,	colour, o	dour	r) :										
SAMPLIN	IG DETA	ILS	1						Sampl	e ID: I	MW1						
Date 22	2/09/2016		Tim	ne:10:00					Undert	aken B	y: S Pet	tts		1			
PID reading		- ppm		th to LNA	.PL:			m	Depth t				.43 m	Depth	to DNAPL	1	- m
Flow Rate:	0.09L/ s	Vol. 1	Remov	ed:		4L	Sampli	ing	Method:	:	Low F	low					
Temp.: 28.3°C DO:0.4 -ppm mg/L pH: 6.93											EC: 31.6	j		mS/cm	Eh:-273		mV
		DO:-			%	Sat				S	Salinity:			-ppm mg/L			_
Comments	s (e.g. cont	tainers	s, filtr	ation): (C01_201	609	22, RB	- Q	C03_20)16092	22, FB -	· QC04	1_201				
CoC Nu	mber: 20	16092	22		Check	ed b	y:	SI	Petts			Da	ate:	22/09	9/2016		

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes 1 can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m. Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

²

Client: C	GG	r											BO	RE II): MW2	}			
Project: 1	Poi	nt Moore	Grou	ındw	ater As	sessment							Job	No.:	6134772	2			
Location	: Ca	aptain Cr	es			Casing	diam	eter:				50 mm	Tota	al De _l	pth:				6.03
BORE C	ON	STRUCT	ION																
Head- works	⊠ Flu		onun	nent			□ Locke	ed				Cover/ nument	Inne Cas		Datum Elev.:	ı	m		Local AHD
PURGIN	G I	DETAILS																	
Method:		Low Flow Pump	V	Dat	te: 22/09	9/2016				ndertak Petts	en B	By:		Flov	w Rate:			0.	.07L/s
PID read	ing	: N/Ar	pm	Wa	ter Col	umn:		4.2m	Re	eq Purg	e Vo	ol. 1:	-L	Act	ual Vol.	Purge	ed:		-L
		Time		I	Depth	to LNAF	L (m	1)	De	epth to v	wate	er (m)		Dep	th to D	NAPL	(m)		
Start		10:15			-				1.8	83				-					
Finish	11:30 - 1.83																		
PURGIN	G N	MEASUR	ЕМЕ	ENTS	2			<u> </u>						I					
Vol. Purged (L) Elapsed Time (min) EC (mS/cm) Temp. (°C) Salinity (ppm) pH DO %Sat (ppm) DO (ppm) Eh (mV) Comments – Turbidity, Colour Odour, etc.														olour,					
1	1 4 2.63 25.7 - 7.06 - 1.02 -33 Colourless S																		
2	8 2.6 25.7 - 7.05												1.	02	-30				some solids
3		13		2.4		25.8		-		7.04		-	0.	94	-36		БРС	aca .	3011 G 5
4		17		2.41	1	25.7		-		7.06		-	0.	94	-35				
5		20		2.36	5	25.6		-		7.07		-	0.	93	-35				
6		24		2.38	3	25.5		-		7.10		-	- 0.91						
7		29		2.38	3	25.4		-		7.11		-	0.	88	-39				
				+/-3.0	%	+/-3.0%				+/- 0.1		+/-10%	+/-3	.0%	+/- 10 mV	V			
Commen	ts (e.g. condit	tion (of hea	dwork	s, colour,	odou	r):											
SAMPLI	NG	DETAIL	S							Sample	e ID	: MW2							
Date 2	22/09	9/2016		Tim	ie:		11	:00		Undert	aken	By: S Pett	s						
PID readii	ng:	-]	ppm	Dep	th to LN	NAPL:		-	m	Depth t	to W	ater:	1	.83 m	Depth	to DN	APL		- m
Flow Rate: 0.07L/s Vol. 7L Sampling Method: Low Flow Removed:																			
Temp.:		25.4 °C	DO	: 0.88			ppm ng/L	pH:		6.11		EC:		2.38	mS/cm	Eh:		•	-39mV
			DO	:		-9/	Sat					Salinity:			-ppm mg/L				
Commen	ts (e.g. contai	iners	, filtr	ation):														
CoC Nu	ıml	er: 201	6092	2		Chec	ked b	y:	SI	Petts			D	ate:	22/0	9/2016			

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

Client: CG	G		BO	BORE ID: MW3											
Project: Po	int Moore	Groundw	Job	Job No.: 6134772											
Location: A	Astrolabe L	'n		Casing di	iameter:				50 mm	Tota	al De _l	pth:		5.90 m	
BORE CONSTRUCTION															
Head- works		onument	□ Cas		l ocked		atum oint	Cover/ nument		☑ Inner Casing Datum Elev.:			n □ Local m ⊠ AHD		
PURGING	DETAILS														
Method:	Low Flow	v Da			Undertaken By: Flow Rate: S.Petts							0.09L/s			
PID readin	g: N/Ap	opm Wa	ater Colur	nn:	m	R	eq Purg	e Vo	l. ¹:	L	Act	L			
	Time	•	Depth to	o LNAPL	. (m)	D	epth to	wate	er (m)		Dep	th to Di	NAPL (m	1)	
Start	1200		-		68				-						
Finish	1240		-	2.68											
PURGING MEASUREMENTS ²															
Vol. Purged (L)	Elapsed Time (mi		l l	ър. (°С)	Salinity (ppm)		pН	De	O %Sat	DO (p	ppm)	Eh (mV)	Turbi	omments – idity, Colour, dour, etc.	
1	10	2.8	4 2	7.9	-		7.42		-	0.4	-2	-170		ourless, SO ₂	
2	14	2.8	0 2	28.0	-		7.39		-	0.21		-202	odou	r, suspended solids	
3	18	2.7	2 2	8.1	-		7.35		-	0.13		-227			
4	22	2.6	2 2	8.1	-		7.34		-	0.0	9	-240			
5	26	2.5	6 2	8.1	-		7.34		-	0.0	06 -249				
		+/-3.0)% +/·	-3.0%			+/- 0.1		+/-10%	+/-3.0%		+/- 10 mV	V		
Comments	(e.g. condit	tion of he	adworks,	colour, oc	dour):										
SAMPLIN	G DETAIL	S					Sampl	e ID	: MW3						
Date 22/	09/2016	Tin	ne:12:30				Undertaken By: S Petts								
PID reading	: -]	ppm Dep	oth to LNA	PL:		- m	Depth 1	to W	ater:	2	.68 m	Depth	h to DNAPL - m		
Flow Rate:	0.09 L/s	Vol. Removed	l:	9	9L Samp	ling	ng Method: Low Flow Pump								
Temp.:	27.8 °℃	DO:		-pp mg			5.95 EC:		EC:		5.95	mS/cm	Eh:	-10mV	
		DO:			71.8%Sat Salin						y: -ppm mg/L				
Comments	(e.g. contai	iners, filtr	ation):												
All metals i	ield filtere	d													
CoC Number: 20160922															

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

² Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Client: Co	Client: CGG													BORE ID: SHP8					
Project: F	Point Moor	e Gro	undw	Jo	Job No.: 6134772														
Location:	Coxswain	Park			Casing	diam	eter:			50 mi	n To	Total Depth: 4.76 n							
BORE CONSTRUCTION																			
Head-works □ E □ Casing □ Locked										□ Cover/ Monument	⊠ Ir Casi		Datum Elev.:	□ Local m 🗷 AHD					
PURGIN	PURGING DETAILS																		
Method: Low Flow Date: 2016									Undertaken By: Flow Rate: S.Petts						L/s				
PID readi		1.8 m	Req F	Req Purge Vol. 1: -L Actual Vol. Pu						8L									
	Time			Depth	h to LNAP	L (m	1)	Deptl	ı to v	vater (m)		Depth to DNAPL (m)							
Start	1310			-				2.08				-	-						
Finish	1340			-	2.0														
PURGING	PURGING MEASUREMENTS ²																		
Vol. Purged (L)	Elapsed T (min)		EC (mS/cr		emp. (°C)	(°C) Salinity (ppm)		pl	H	DO %Sat	DO ((ppm)	Eh (mV)	Turbid	nments – lity, Colour, lour, etc.				
1	5		11.4	9	27.6	27.6 -		6.8	89		0.	67	-285		urless, SO ₂				
2	10		8.95	5	27.5			6.7	74		0	.2	301		, suspended solids				
3	15		8.94	4	28			6.7	73		0.	09	-308						
4	17		9.04	4	27.7			6.0	67		0.	16	287						
5	20		9.06	6	27.7			6.0	63		0.	07	300						
6	23		8.97	7	27.7	27.7		6.5	58		0.	05	-306						
			+/-3.0	%	+/-3.0%			+/-	0.1	+/-10%	+/-3	3.0%	+/- 10 mV	V					
Comment	ts (e.g. cond	lition	of hea	ıdwork	s, colour,	odou	r):												
SAMPLI	NG DETAI	ILS						Sa	ımple	e ID: SHP8									
Date 22	2/09/2016		Tim	ie:		1330 Undertaken By: S Po					etts	etts							
PID readin	ıg:	- ppm	Dep	oth to LN	NAPL:		- r	n De	pth te	o Water:		2.08 m	Depth	to DNAPL	to DNAPL - m				
Flow Rate:	0.06L/s	Vol.	Remov	red:		6L	Sampli	ling Method:						Low Flow					
Temp.:	27.7 °C	DO:	0.05			ppm ng/L	pH:	6.5	6.58 EC:		C: 8.97		mS/cm	Eh:	-306mV				
		DO:				6Sat				Salinit	y:	: -ppm mg/L							
Comment	ts (e.g. cont	ainer	s, filtr	ation):									mg, z						
All metals	s field filter	red																	
CoC Nu	CoC Number: 20160310 Checked by: S Petts Date: 22/9/16																		

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

² Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Client: CGG													BORE ID: MW1					
Project: Point Moore Groundwater Assessment													Job No.: 6134772					
Location: 1	Marine T	errace			Casing	diam	eter:		Locati	on: N	Aarine	Total Depth: 5.91						
BORE CO	NSTRUC	TION																
Head-works ☑ ☐ Monument ☐ Casing ☐ Locked													Elev.:			□ Local m ⋈ AHD		
PURGING	DETAIL	S																
Method:	Low Fl Pump	e: 2016	6 Undertaken By: S.Petts								Flow Rate: 0.00				0.006L/s			
PID readin	ter Colur	dumn: 3.51 m				eq Purg	e Vo	l. ¹:	-L	Actual Vol. Purged: -				-L				
	Time			Depth to	h to LNAPL (m)				epth to	wate	r (m)		Dep	oth to D	NAP	L (m)		
Start	-					41				-								
Finish	1000			-				2.4	41				-					
PURGING	MEASU	REMI	ENTS	2														
Vol. Purged (L)			EC (mS/cr		emp. (°C)		Turbidity (NTU)		pН	DO	O %Sat	DO (ppm)		Eh (mV)	,	Comments – Turbidity, Color Odour, etc.		
1	1 5		20.7	' 2	28.1		6.7		7.34		7.4	-		-289		S2O odour, sor		
2 8		17.23	3 2	7.9	9.7			7.32		11.4	-		-279		TSS, colourless			
3	10	10 16.26		6 2	27.9 9.1		9.1		7.44		23.6	-		-274				
4	12 16.1		16.1	1 2	27.9		7.5		7.46		14.8	-		-273				
5	5 15 1		15.89	9 2	27.9		8.4		7.48	3 15.4		-		-272				
6	18		15.82	2 2	7.9	5.2			7.50		15.4	-	-271					
	+/-3.0%		/o +/-	3.0%	,			+/- 0.1	-	+/-10%	+/-3.0	0%	+/- 10 m	V				
Comments	(e.g. con	dition	of hea	dworks,	colour,	odou	r):											
									ī									
SAMPLIN	G DETA	ILS							Samp	le ID	: MW1							
Date 18	/10/2016		Time	e:10:00				Undertaken By: S Petts										
PID reading	<u>;:</u>	- ppm	Dept	th to LNA	PL:		-	m	Depth	to W	ater:	2	2.41 m Depth to DNAPL - m					
Flow Rate:	Flow Rate: 0.006 Vol. Removed: 6L Sam								oling Method: Low Flow									
Temp.:	27.9 °C	DO:				opm ng/L	pH:		7.50		EC: 15.8	82		mS/cm	Eh:	Eh: -271 mV		
		DO:			15.4 %	6Sat					Turbidi	ty	5	.2 NTU				
Comments	(e.g. cont	ainer	s, filtra	ation):Q0	C01_201	16101	8(blind	l), (QC0 <mark>2_2</mark>	0161	018(spli	t), QC	03_20)161018	(RB)		
QC04_201	61018(FB)																
CoC Nun	$aber: \overline{20}$	16101	8		Chec	ked b	y:	SI	Petts			D	ate:	18/1	0/201	6		

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

² Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Client: CO	GG .		BO	BORE ID: MW2											
Project: P	oint Moore	Grou	Job	Job No.: 6134772											
Location:	Captain Cro	es		Casing	Casing diameter: 50 mm Total Depth: 6.02										
BORE CO	NSTRUCT	ION													
	⊠ □ Flush M	onum	ent		Lock		☐ Cover/ Monument	Inne Cas		Datum Elev.:	m	□ Loca ☑ AHI			
PURGINO	G DETAILS														
Method:	Low Flow Pump	v	Date:	18/10/2016	/2016 Undertaken By: S.Petts						Flow Rate: 0.005L/s				
PID readi	ng: N/Ap	pm	Wate	r Column:	4	.12 m	Req Purg	e Vol. ¹:	-L	-L Actual Vol. Purged:				-L	
	Time		I	Depth to LNAP	n to LNAPL (m) Depth to water (m						Depth to DNAPL (m)				
Start	1015		-				1.90			-					
Finish	1050		-		1.90										
PURGINO	G MEASUR	EME	NTS ²												
Vol. Purged (L)			Temp. (°C)	Turbidity (NTU)		pН	DO %Sat	DO (ppm)		Eh (mV)	Turbid	Comments – Turbidity, Colou Odour, etc.			
1	5	5 2.17		20.2	-0.8		7.84	17.1	-		-179		S2O Odour,		
2	8 2.16		20.3		-1.7	7.91	20		-	-177	colour	less, sligl SS	nt		
3	11		2.16	20.3	-0.3		8.09	19.0	-		-180				
4	14		2.18	20.3	-0.7		7.97	18.5	-		-180				
5	17		2.17	20.4	-0.8		7.94	18.2	-		-182				
6	20		2.17	20.4		-1.5	7.90	19.0	-		-183				
			+/-3.0	+/-1.0			+/- 0.1	+/-10%	+/-1.0		+/- 10 mV	7			
Comments	s (e.g. condit	tion o	f head	works, colour,	odou	r):									
SAMPLIN	G DETAIL	S					Sampl	e ID: MW2							
Date 18	/10/2016		Time:	10:40			Undertaken By: S Petts								
PID reading	g: -]	ppm	Depth	to LNAPL:		- n	n Depth t	to Water:	1	.90 m	Depth	to DNAPL	-	m	
Flow Rate:	0.005 L/s	Vol. Rem	oved:		6L	Samplin	ng Method:	: Low Flo	ow						
Тетр.:	20.4 °C	DO:		n	pm ng/L	рН:	7.84	EC: 2.17			mS/cm	Eh:-183	n	nV	
DO: 19.0% Sat Turbidity -1.5 NTU Comments (e.g. containers, filtration):															
Comments	s (e.g. contai	ners,	Illtrat	10n):											
CoC Nui	nber: 201	61018	3	Chec	ked h	oy:	S Petts		D	ate:	18/1	0/2016		_	

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

Groundwater Monitoring – Data Sheet

Client: Co	GG											BO	RE II): MW3			
Project: F	oint Moore	Groun	ndwa	ater Asse	essment							Job	No.:	6134772	2		
Location:	Astrolabe L	n			Casing	diam	eter:				50 mm	Tota	al Dej	pth:			5.87 m
BORE CO	ONSTRUCT	ION															
Head- works	E □ Flush M	onume	ent	□ Ca	asing								☑ Inner Casing Datum Elev.:			m	□ Local ☑ AHD
PURGIN	G DETAILS																
Method:	Low Flow	v	Dat	e: 2016					ndertake Petts	ndertaken By: Petts			Flow Rate:				0.004 L/s
PID readi	ng: N/Ap	pm	Wa	ter Colu	mn:	3	.16 m	Re	eq Purge	. Vo	l. ¹:	L	Acti	ual Vol.	Purge	d:	L
	Time	<u> </u>		Depth t	to LNAP	L (m)	De	epth to v	vate	r (m)		Dep	th to DN	NAPL	(m)	
Start	1100			-				2.7	71				-				
Finish	1140			-				2.7	71				-				
PURGIN	G MEASUR	EMEN	NTS	2			<u> </u>										
Vol. Purged (L	Vol. Elapsed EC us/cm) Time (min)				np. (°C)	Turbidity (NTU)			pН	DO	O %Sat	DO (ppm)		Eh (mV)	V) Turbidit		ments – ty, Colour, ur, etc.
1	5		2.24		22.7	2	21.2		7.96		17.4	-		-137	No odou		
2	9		2.22		22.7		17.3		-		23.6	-		-147	co	colourless, son	
3	12		2012	2 2	22.8		9.7		-		25.1	-		-145			
4	15		2055	5	22.7		8.3		7.65		25.9	-		-147			
5	19		2063	3 2	22.7		8.5		8.02		25.3	-		-149			
6	23		2062	2	22.7		6.4		7.96		26.0	1:		-151			
		+	+/-3.09	/o +	/-3.0%				+/- 0.1	-	⊦/-10%	+/-3.0)%	+/- 10 mV			
Comment	s (e.g. condit	tion of	f hea	dworks,	colour,	odou	r):										
Water met	er issues, pH	readin	ng er	ror													
SAMPLII	NG DETAIL	S							Sample	e ID	: MW3						
Date 1	8/10/2016		Tim	e:		11	:30		Underta	aken	By: S Pet	ts					
PID readin	g: -]	ppm	Dep	th to LNA	APL:		-	m	Depth t	o W	ater:	2	.71 m	Depth	to DN	APL	- m
Flow Rate: 0.004 Vol. 6 I L/s Removed:							Sampl	ing	Method:		Low F	ow Pu	mp	<u> </u>			
Temp.:	22.7 °C	DO:				pm ng/L	pH:		7.96		EC:		2062	uS/cm	Eh:		-151 mV
		DO:			26.0 %						Turbidit	y	6.	4 NTU			
Comment	s (e.g. contai	iners, f	filtra	ation):													
All metals	field filtere	d															
CoC Nu	mbore 201	61019			Chec	zad h	X7.	SP	etts			D	nto.	18/1	0/2016		

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; 100 mm ID 8 L/m.

² Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Groundwater Monitoring – Data Sheet

Client: Co	Client: CGG BORE ID: SHP8 Project: Point Moore Groundwater Assessment Job No.: 6134772																	
Project: F	oint Moor	e Groi	ındwa	ater Ass	essment							Job	No.:	6134772	,			
Location:	Coxswain	Park			Casing	diamo	eter:				50 mm	Tot	al Dej	oth:		5.8	85 m	
BORE CO	ONSTRUC	TION																
Head- works		x Monur	nent	□ Ca	0	□ Locke					over/ ument					□ Lo Al		
PURGIN	G DETAIL	S																
Method:	Low Flow					ndertako Petts	en B	y:		Flow Rate: 0.004 L				L/s				
PID readi	ımn:	3.	.68 m	Re	eq Purge	e Vol	l. ¹:	-L	Actual Vol. Purged: 8				8L					
	Time			Depth	to LNAP	L (m))	De	epth to v	vatei	r (m)		Dep	th to DN	NAPL	(m)		
Start	1145							2.1	17				-					
Finish	1230							2.1	17									
PURGIN	G MEASU	REMI	ENTS	2														
Vol. Purged (L)	Elapsed T (min)		ne EC (mS/cm) Temp. (°C) Tur						pН	DC			DO Eh (mV)		Т	Comments – Turbidity, Colour, Odour, etc.		our,
1	5		3.69	9 20.2 -3.7					7.63		11.1	-		-226			less, sl	
2	9		3.71	20.	.3		-3.2		7.66		13.8	-		-225		S2O odour, SS		ome
3	14		3.74	ļ	20.3		-3.2		7.65		13.8	-		-224				
4	17		3.77	7	20.2		-3.2		7.69		15.6	-		-223				
5	20		3.79)	20.2		-3.7		7.70		16.3	-		-222				
			+/-3.0	% +	+/-3.0%				+/- 0.1	+	-/-10%	+/-3.0)%	+/- 10 mV	7			
Comment	s (e.g. cond	lition	of hea	dworks	, colour,	odoui	r):											
SAMPLII	NG DETAI	LS							Sample	e ID:	SHP8							
Date 1	8/10/2016		Tim	e: 1220					Undert	aken	By: S Pe	tts						
PID readin	g:	- ppm	Dep	th to LN	APL:		- r	n	Depth t	o Wa	iter:	2	.17 m	Depth	to DN	NAPL		- m
Flow Rate:	0.004 L/s	Vol. 1	Remov	ed:		5L	Sampli	ng	Method:		Low F	low						
Temp.:	mg/L								7.70 EC:					mS/cm 7 NTU	Eh:		-222	2 mV
		DO:	04 -		16.3 %	6Sat					Turbidit	z y	-3.	1110				
	s (e.g. cont		, filtra	ation):														
All metals	field filter	ed																
CoC Nu	mber: 20	16101	Q.		Chec	ked h	v•	S P	Petts			D	ate:	18/1	0/2016			

Bores to be purged dry, until pH, T and EC readings stabilise or a minimum of 3 to 5 times the water column volumes. Water column volumes can be calculated from the following casing volumes per unit length: 40 mm ID - 1 L/m; 50 mm ID - 2 L/m; $100 \text{ mm ID} \times 1 \text{ L/m}$. Calibration details to be recorded in the instrument –specific calibration book, or in field notes as required by local procedures.

Appendix E – Quality Assurance and Quality Control

E1 Introduction

The Quality Assurance/Quality Control (QA/QC) procedures are based on the DER Assessment and management of contaminated sites (DER 2014), ASC NEPM (NEPC 1999), AS 4482.1 – 2005 (Standards Australia 2005), AS 4482.2 – 1999 (Standards Australia 1999) and AS 5667 – 1998 (Standards Australia 1998). QA involves all of the actions, procedures, checks and decisions, undertaken to ensure the representativeness and integrity of samples and accuracy and reliability of analytical results. QC involves protocols to monitor and measure the effectiveness of QA procedures.

E2 Field Work Program

E2.1 Field Quality Assurance Procedures

All field work was conducted with reference to the DER (2014) and GHD's Standard Field Operating Procedures, which ensures all environmental samples are collected by a set of uniform and systematic methods, as required by GHD's QA system. The procedures undertaken as part of the soil and groundwater assessments includes:

- Decontamination Procedures: Included the use of new disposable gloves for the collection of each sample, decontamination of the sampling equipment between each sampling event and the use of sampling containers provided by the laboratory;
- Sample Identification Procedures: Collected samples are immediately transferred to sample containers of appropriate composition and preservation for the required laboratory analysis. All sample containers were clearly labelled with a sample number, sample location, sample depth, sample date and sampler's initials. The sample containers were transferred to a chilled esky for sample preservation prior to and during shipment to the testing laboratory;
- Chain of Custody Information Requirements: A chain of custody form was completed and
 forwarded to the testing laboratory with all sample batches and in some instances
 emailed separately to the laboratory prior to the Esky's arrival to the laboratories. The
 purpose of this was to provide the laboratory notification of samples requiring extraction
 upon arrival; and
- Sample blind duplicate and split duplicate, rinsate blank and field blank frequency.

E2.2 Groundwater Sampling and Analysis Quality Control

The DER Contaminated Sites Management Guidelines outlines the requirements for Quality Control (QC) sampling protocols. The QC samples collected during the investigation are described below and presented in **Table E1**.

Blind (Intra-laboratory) Duplicates

Blind (Intra-laboratory) duplicate samples were used to identify the variation in the analyte concentration between samples collected from the same sampling point and the repeatability of the laboratory's analysis.

Split (Inter-laboratory) Duplicates

Inter-laboratory duplicate samples provide an indication of the repeatability of the results between laboratories.

Rinsate Blanks

Rinsate blank samples are water samples collected from decontaminated, re-used field equipment and used primarily to assess whether the decontamination procedure is effective and if cross-contamination has led to positive observations in subsequent samples.

Rinsate samples were collected by pouring laboratory supplied ultra-high purity rinsate water over the probe of water quality meters and interface probes or running it through the pump and collecting it in laboratory supplied containers. Rinsate samples are then transferred to a chilled esky for sample preservation prior to and during shipment to the testing laboratory.

Field Blanks

Field blank samples were used to estimate contamination of a sample during the collection procedure.

Field blank samples are collected by pouring laboratory supplied rinsate water into laboratory supplied bottles onsite. Field blank samples are then transferred to a chilled esky for sample preservation prior to and during shipment to the testing laboratory.

Table E1 Quality Control Sampling Frequency

Sample	Sample Collection Frequency
Blind (Intra-laboratory) Duplicates	1:20 samples
Split (Inter-laboratory) Duplicates	1:20 samples
Equipment Rinsate Blanks	1 per matrix per day
Field Blanks	1 per matrix per day

E2.3 Relative Percent Difference Calculations

Blind and split duplicate samples were assessed by calculating the relative percentage difference (RPD) between the primary, blind and split samples.

A quantitative measure of the accuracy of the analytical results reported was made by calculating the RPDs between the primary, blind and split results in accordance with the procedure described in AS 4482.1 - 2005. According to AS 4482.1 - 2005 typical RPDs are expected to range between 30% and 50%; however, this may be higher for organics and for low concentrations of analytes. GHD uses 50% as the general assessment criteria.

Where a result was reported below the laboratory limit of reporting (LOR) for one of the duplicate pair samples, the sample will be assigned the concentration of the LOR for RPD calculation purposes.

E3 Laboratory Program

Samples were dispatched to various nominated NATA accredited laboratories for the analytes of concern, with Chain of Custody documentation acknowledging the transference of samples from the Site to the laboratory. The primary and blind duplicate samples were dispatched to ALS Laboratory Group. The split duplicate samples were dispatched to SGS Environmental.

E3.1 Laboratory Analytical Methods

Laboratory methods used by the primary and secondary laboratories are considered suitable for environmental contaminant analysis and are based on established internationally recognised procedures. Each of the laboratories were NATA accredited for the proposed analysis.

Table E2 Laboratory Methods, LORs and Laboratory Holding Times for Groundwater Analysis

Analyte	Method	Limits of Reporting (LOR)	Holding Times
Ammonia	APHA 4500-NH 3 B/C	0.05 mg/L	1 day
Nitrite	APHA 4110/4500-NO ₂	0.05 mg/L	2 days
Nitrate	APHA 4110	0.05 mg/L	2 days
Total Nitrogen	APHA 4500-N	0.05 mg/L	28 days
Total Dissolved Solids	APHA 2540C	10 μg/L	7 days
E. coli (MF)	AS4275:21-2005	1 cfu/100 mL	24 hours

E3.2 Laboratory Quality Control Procedures

The following laboratory QC procedures were used during the investigation.

Laboratory Duplicate Samples

Laboratory duplicate sample analysis were the analysis of a laboratory derived duplicate sample from the process batch, at a rate equivalent to one in twenty samples per analytical batch, or one sample per batch if less than twenty samples are analysed in a batch. A laboratory duplicate provides data on the analytical precision and reproducibility of the analytical results.

The permitted ranges for the RPD of Laboratory Duplicates, as specified in ALS Method QWI-EN/38 are dependent on the magnitude of results in comparison to the level of reporting. For RPD results that are less than ten times the limit of reporting (LOR) there are no limits, for results between ten and twenty times the LOR the adopted criteria are 0% - 50% and for results greater than twenty times LOR the criteria are 0% - 20%.

Method Blank Samples

Method or analysis blank sample analysis is the analysis of a sample that is as free as possible of the analytes of interest, but has been prepared the same as the samples under investigation. The analysis is to ascertain if laboratory reagents, glassware and other laboratory consumables contribute to the observed concentration of analytes in the process batch. If below the maximum acceptable method blank (20% of the practical quantitation limit), the contribution is subtracted from the gross analytical signal for each analysis before calculating the sample analyte concentration. GHD notes that the subtraction of the method blank concentration is not appropriate for some organic analytes.

Laboratory Control Spike Samples

Laboratory control spike analysis is the analysis of either a reference material or a control matrix fortified with analytes representative of the analyte class. The purpose of laboratory control spike samples is to monitor method precision and accuracy independent of the sample matrix. Typically, the percent recovery of the laboratory control spike sample is compared to the dynamic recovery limits based on the statistical analysis of the processed laboratory control spike sample analysis.

Matrix Spike Samples

Matrix spike sample analysis is the analysis of one or more replicate portions of samples from the batch, after fortifying the additional portion(s) with known quantities of the analyte(s) of interest. The percent recovery of target analyte(s) from matrix spike samples is used to determine the bias of the method in the specific sample matrix.

Surrogate Spike Samples

Surrogate spike samples are samples with known additions of known amounts of compounds, which are similar to the analytes of interests in terms of extractability, recovery through clean-up procedures and response to chromatographic or other measurement. Surrogate compounds may be alkylated or halogenated analogues or structural isomers of analytes of interest. The purpose of surrogate spikes, which are added immediately before the sample extraction step, is to provide a check for every analysis that no gross processing errors have occurred, which could have led to significant analyte loss or faulty calculation.

Internal Standards

Internal standards are known additions of known amounts of compounds which are not found in real samples, will not interfere with quantification of analytes of interest and may be separately and independently quantified. The purpose of internal standards in instrumental techniques is to provide independent signals, which serve to check the consistency of the analytical step. Internal standards are often used for organic compounds and some inorganic compounds.

E4 Data Management

Laboratory results were reviewed within five working days of receipt from the laboratory.

The individual testing laboratory conducted an assessment of the laboratory QC program, internally, however the results will also be independently reviewed and assessed by GHD, to ensure that no issues exist with the data prior to undertaking any data interpretation. GHD reviewed the Laboratories' quality control certificate and identified any outliers. The outliers identified are discussed in the sections below.

Following receipt of data, the groundwater results were converted to ESDAT format and compared against the adopted criteria provided in Section 6.1 Subsequent to this the ESDAT format was modified to ensure that only test pits location relevant to the Site were presented. All data will be stored in an electronic format as well as produced in hard copy. The hard copies were stored along with chain of custody (CoC) forms in the project file. The CoC forms and laboratory certificates are presented in Appendix F.

E5 Sampling and Analysis Quality Control Results: Groundwater

E5.1 Sample Duplicates

The blind and split duplicated QC samples collected for the 2016 GME is listed in Table E3. The split sample was not analysed for microbes as a result of issues associated with sample receipts department. The split sample was processed outside the 24 hour holding and therefore the laboratory was advised not to proceed with analysing this sample for microbes.

Table E3 Sample Duplicates

Primary Sample	QC Sample	Description	Date	Analyses
MW1	QC01_20160824	Blind – ALS	24/08/2016	Ammonia, BOD, E. coli, Faecal coliforms, total coliforms, nitrates, nitrite, TDS, TKN, total nitrogen, total phosphorus
MW1	QC02_20160824	Split – SGS	24/08/2016	Ammonia, BOD, nitrates, nitrite, TDS, TKN, total nitrogen, total phosphorus
MW1	QC01_20160923	Blind – ALS	23/09/2016	Ammonia, BOD, E. coli, Faecal coliforms, total coliforms, nitrates, nitrite, TDS, TKN, total nitrogen, total phosphorus
MW1	QC02_20160923	Split – mpl	23/09/2016	Ammonia, BOD, E. coli, Faecal coliforms, total coliforms, nitrates, nitrite, TDS, TKN, total nitrogen, total phosphorus
MW1	QC01_20161018	Blind – ALS	18/10/2016	Ammonia, BOD, E. coli, Faecal coliforms, total coliforms, nitrates, nitrite, TDS, TKN, total nitrogen, total phosphorus
MW1	QC02_20161018	Split – mpl	18/10/2016	Ammonia, BOD, E. coli, Faecal coliforms, total coliforms, nitrates, nitrite, TDS, TKN, total nitrogen, total phosphorus

Rinsate and Field Blanks

The rinsate and field blanks collected during the groundwater investigation undertaken in 2016 are listed in Table E4.

Table E4 Rinsate and Field Blanks

QC Sample	Description	Date	Analysis
QC03_20160824	Rinsate blank	24/08/2016	Ammonia, BOD, Nitrate, Nitrite, TDS, TKN, total nitrogen and total phosphorus
QC04_20160824	Field blank	24/08/2016	Ammonia, BOD, Nitrate, Nitrite, TDS, TKN, total nitrogen and total phosphorus
QC03_20160922	Rinsate blank	23/09/2016	Ammonia, BOD, Nitrate, Nitrite, TDS, TKN, total nitrogen and total phosphorus
QC04_20160922	Field blank	23/09/2016	Ammonia, BOD, Nitrate, Nitrite, TDS, TKN, total nitrogen and total phosphorus
QC03_20161018	Rinsate blank	18/10/2016	Ammonia, BOD, Nitrate, Nitrite, TDS, TKN, total nitrogen and total phosphorus
QC03_20161018	Field blank	18/10/2016	Ammonia, BOD, Nitrate, Nitrite, TDS, TKN, total nitrogen and total phosphorus

A summary of the reported detects within field and rinsate blank samples is provided:

- QC03_20160824 (rinsate sample) detected BOD above the LOR (5 mg/L). Primary samples reported BOD to range between 4 mg/L and 7 mg/L. Considering two primary samples reported BOD below 5 mg/L, it is unlikely that this detect would impact the overall integrity of the data;
- QC03_20160922 (rinsate sample) detected TDS above the LOR (20 mg/L). Considering
 the concentrations of Primary samples which reported TDS to range between 1,320 mg/L
 to 22,400 mg/L, which were reported in three orders of magnitude greater this QC
 sample; therefore, it is considered that this would no impact on the integrity of the data;
- QC03_20161018 (rinsate sample) and QC04_20161018 (field blank) reported total dissolved solids, ammonia marginally above the LOR. It is likely that the source of this contamination is associated within laboratory supplied water and therefore it is considered that this would no impact on the integrity of the data;

 QC04_20161018 (field blank) reported nitrate and nitrite, the source of this contamination is unknown. Notwithstanding this, the detects are equal to the LOR and considering that two primary samples reported both these CoPC below the LOR. It is therefore considered unlikely that this detect would impact the overall integrity of the data;

Relative Percentage Difference Calculation Results

During the 2016 GME, 79 RPDs were calculated on field samples with six RPDs exceeding the recovery limit of 50%. RPDs for the groundwater investigation are presented in Appendix G and the RPD exceedances are summarised in Table E5.

Table E5 Groundwater RPDs Greater than 50%

Primary/Duplicate Sample Name	Analytes with RPD exceeding 50%	Comment						
MW1/QC01_20160824	Coliform (200%)	The primary sample (250, 000 cfu/100 mL) was reported higher than the blind sample (200 cfu/100 mL). These two samples are in four orders of magnitude and the difference between the two samples is a result of the primary sample having a higher amount of particulate matter than the blind sample.						
	Faecal Coliform (138%)	The blind sample (1100 cfu/100mL) was higher than the primary (200 cuf/100mL). The difference between the primary and blind is a result higher level of particulate, which may be masked by overgrowth of non-						
	E. coli (138%)	target organisms.						
MW1/QC02_20160923	BOD (144%)	The primary sample reported a concentration (31 mg/L) above the LOR, while the split duplicated reported a concentration below the LOR (<1 mg/L). The elevated RPD suggested that the primary laboratory may have over reported the BOD concentration. By considering the primary sample concentration when evaluating the groundwater quality, GHD considers that a conservative approach has been implemented in this regard and secondary laboratory is unlikely to have impacted upon data quality and the overall conclusions drawn.						
	Plate Count 36°C (67%)	The split sample (340 cfu/100 mL) was higher than the primary. The different incubation temperatures used by the primary and secondary laboratory, likely has attributed to the different plate count. With consideration to the above, the elevated RPD value for this duplicate is not considered to have significantly impacted upon the overall data quality.						
	Plate Count 22°C (67%)	The split sample (260 cfu/100 mL) was higher than the primary. The different incubation temperatures us by the primary and secondary laboratory, likely has attributed to the different plate count. With consideration to the above, the elevated RPD value for this duplicate is not considered to have significantly impacted upon the overall data quality.						

Primary/Duplicate Sample Name	Analytes with RPD exceeding 50%	Comment
	Nitrite as N (197%)	The primary sample was reported below the LOR (0.01 mg/L) while the secondary reported a concentration above the LOR (0.006 mg/L). The RPD is a reflection of the different LOR used by the primary and secondary. The secondary utilises a low LOR, as the detected concentration in secondary is below the primary laboratory's LOR. With consideration to the above, the elevated RPD value for this duplicate is not considered to have significantly impacted upon the overall data quality.
	Nitrate as N (195%)	The primary sample reported a concentration (0.05 mg/L) above the LOR, while the split duplicated reported a concentration below the LOR (<0.005 mg/L). The difference between the primary and secondary are the laboratory limit of reporting. Notwithstanding this, the elevated RPD suggested that the primary laboratory may have over reported the BOD concentration. By considering the primary sample concentration when evaluating the groundwater quality, GHD considers that a conservative approach has been implemented in this regard and secondary laboratory is unlikely to have impacted upon data quality and the overall conclusions drawn.
MW1	BOD (81%)	The primary sample (33 mg/L) was higher than the split sample (14 mg/L). The elevated RPD suggested that the primary laboratory may have over reported the BOD concentration. By considering the primary sample concentration when evaluating the groundwater quality, GHD considers that a conservative approach has been implemented in this regard and secondary laboratory is unlikely to have impacted upon data quality and the overall conclusions drawn

E5.2 Laboratory Quality Control Results

Laboratory Duplicates

There were no RPD outliers for laboratory duplicate samples reported by ALS or SGS

Method Blank Samples

There were no method blank recovery value outliers reported by ALS or SGS. GHD considers that the analyses methods used were free from potential laboratory contamination and that the data is suitable for Site soil characterisation.

Laboratory Control Spike Samples

There were no laboratory control outliers reported by ALS or SGS. GHD considers the results from all analyses performed to be sufficiently accurate and independent of the sample matrix and therefore the data is suitable for soil characterisation.

Matrix Spike Samples

There were no matrix spike outliers reported by ALS or SGS for the 2016 groundwater investigation.

Surrogate Spike Samples

There were no surrogate recovery outliers reported by ALS or SGS for the 2016 GME.

E5.3 Review of Sample Management

Laboratory Holding Times

Analysis of samples within analyte specific holding times serves as a measure of QA. The official certificates of analysis and sample receipt notifications obtained from the contracted laboratories reported groundwater analysis was generally completed within specified holding times, with the non-conformance presented in Table E6.

Table E6 Holding Time Non-conformance

Analysis	Samples	Due for Analysis	Date Analysed	Comment
Nitrate Nitrogen and Nitrite Nitrogen	QC02	28/09/2016	29/09/2016	GHD compared the QC02 results with the primary. The reported
Total Dissolved Solids	QC02	31/08/2016	1/09/2016	concentrations appear to be in a similar order of magnitude.

Chain of Custody Forms and Sample Receipts

GHD used Chain of Custody (CoC) forms during the groundwater investigations to establish the traceability of samples and these are attached in Appendix F. A review of the CoC forms by GHD indicates that all prescribed sample transfer, transport and storage protocols were complied with. Sample receipts are presented in Appendix F.

E6 Quality Control and Quality Assurance Summary

The review of the QA/QC results indicates that, overall, the data reported is considered to be of an acceptable quality upon which to draw meaningful conclusions regarding impacts to groundwater at the Site and are within the scope of this investigation for the following reasons:

- Data Representativeness: The sampling methodology provided a uniform and systematic approach to the collection of all environmental samples. Laboratory and field QA/QC procedures were carried out to measure data representativeness. Consequently, data representativeness is considered to have been satisfied;
- Completeness: It is considered that the field QA/QC procedures carried out, such as the blind and split sample duplicate collection frequencies, and the analytes tested provides completeness in terms of the required number of field duplicate samples. Laboratory QA/QC sample analysis is considered sufficient to provide a complete overview of QA/QC procedures;
- **Precision:** GHD considers that laboratory results are acceptable for interpretation with regards to the suitability of the site for the proposed land use;
- **Accuracy:** Sampling procedures ensured that collection, preservation and laboratory analytical techniques are appropriate for analysis of environmental contaminants.
 - Rinsate blank, field blank and trip blank sample results have been discussed and
 results indicate that cross-contamination of samples through collection or transport of
 the samples to the laboratory is unlikely to have occurred and therefore is not
 considered to have impacted interpretation of contamination at the site.
- Comparability: All field work was conducted with reference to the DER Contaminated Sites Management Series Guidelines and GHD Standard Operating Procedures, which ensured all samples were collected by a set of uniform and systematic methods, as required by GHD's QA system. GHD considers that the laboratory data are of a suitable quality for assessing the environmental status of the site.

Consequently, the review of QA procedures and QC results from the primary and secondary laboratories indicates that the analytical data are considered to be of an acceptable quality upon which to draw meaningful conclusions regarding the impacts to soil and groundwater at the site within the scope of this investigation. Any laboratory issues have been listed above and discussed within their relevant sections.

Appendix F – Chain of Custody and Laboratory Reports

CHAIN OF CUSTORDY RECORD AND

GHD House 239

CLIENTS PEOPLE PERFORMANCE Adelaide Terrace Perth WA

Telephone 08 6222 8222 Facsimile 08 6222

PO Box Y3106 ANALYSIS REQUEST Perth WA 6832 Page ____1__ of ___1__ COC No. Point Moore Groundwater Assessment Laboratory:MGT Address: Unit 2, 91 Leach Highway, Kewdale WA 6105 Client Job No. 61/34772 City of Greater Geraldton Laboratory Contact: Natalie Container Laboratory Quote No. Turnaround Time Remarks Analyses Sample Matrix s-soil/ SL-Sludge/ Water/ A-Air Total Volume (mL) Type B-Bottle/J-Jar/V-Job Manager (Invoice) Email Address (Results) Andrew Nagle andrew.nagle@ghd.com steven. petts@ghd.com GHD Sample ID Laboratory Sample ID Date Time Hoe S X S 250 15/08/2016 NA MW1_0.5 X MW1 1.0 15/08/2016 250 S NA 1 X 15/08/2016 250 MW1_1.5 S NA 1 X MW1_2.0 15/08/2016 S NA 250 X MW1 2.5 15/08/2016 S NA 1 250 X MW1_3.0 15/08/2016 S NA 1 250 X 15/08/2016 S 250 MW1 3.5 NA 1 X MW2_0.5 15/08/2016 S NA 1 250 MW2_1.0 X MW2 1.5 15/08/2016 S NA 250 1 X 15/08/2016 S MW2_2.0 250 NA 1 X MW2 2.5 15/08/2016 S NA 1 250 X MW2_3.5 15/08/2016 S NA 1 250 X MW2_4.0 15/08/2016 S NA 250 X MW2 4.5 15/08/2016 S NA 1 250 X MW2_5.0 15/08/2016 S NA 1 250 |X|15/08/2016 NA 250 MW2_5.5

MW2_6.0	15/08/2016	S	J	NA	1	250							X
QC01_15082016	15/08/2016	S	J	NA	1	250							X
QC02_15082016	15/08/2016	S	J	NA	1	250							X
MW3_0.5	15/08/2016	S	J	NA	1	250							X
MW3_1.0	15/08/2016	S	J	NA	1	250							X
MW3_1.5	15/08/2016	S	J	NA	1	250							X
MW3_2.0	15/08/2016	S	J	NA	1	250							X
MW3_2.5	15/08/2016	S	J	NA	1	250							X
MW3_3.0	15/08/2016	S	J	NA	1	250							X
MW3_3.5	15/08/2016	S	J	NA	1	250							X
MW3_4.0	15/08/2016	S	J	NA	1	250							X
MW3_4.5	15/08/2016	S	J	NA	1	250							X
MW3_5.0	15/08/2016	S	J	NA	1	250							X
MW3_5.5	15/08/2016	S	J	NA	1	250							X
MW3_6.0	15/08/2016	S	J	NA	1	250							X
QC03_15082016	15/08/2016	S	J	NA	1	250							X
QC04_15082016	15/08/2016	S	J	NA	1	250							X
Sampled by: S. Petts			ne: 15/08/	2016			Relinquished by: S.Pe	etts					Date/ Time: 15/08/2016
Received by:			ne:				Relinquished by:						Date/ Time:
Received by Lab:							Courier/ Transport Company: NA						
Sample Conditions:		Date/Time: Courier/ Transport Company: NA Remarks:											
cap.c conditions.		Hemarks	•										

CERTIFICATE OF ANALYSIS

Work Order : **EP1607778**

: GHD PTY LTD

Contact : MR ANDREW NAGLE

Address : 999 HAY STREET

PERTH WA 6000

Telephone : +61 08 6222 8222

Project : 61/34772 Point Moore Groundwater Assessment

Order number : ----

Client

C-O-C number : ----

Sampler : STEVEN PETTS

Site : ---Quote number : ---No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Lauren Biagioni

Address : 10 Hod Way Malaga WA Australia 6090

Telephone : 08 9209 7655

Date Samples Received : 25-Aug-2016 09:20

Date Analysis Commenced : 25-Aug-2016

Issue Date : 31-Aug-2016 16:11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alini Goundar Senior Analyst Perth Microbiology, Malaga, WA
Jeremy Truong Laboratory Manager Perth Inorganics, Malaga, WA
Tyrone Cole Inorganics Preparation Supervisor Perth Inorganics, Malaga, WA

 Page
 : 2 of 4

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- CFU = colony forming unit
- MF = membrane filtration
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- MW002: estimate (~) is reported where the growth of bacteria is counted <10cfu and or >300cfu.
- MW006, estimate (~) is reported where the growth of presumptive bacteria on the filtered membrane is counted <10 cfu and/or >100 cfu.
- MW002 is ALS's internal code and is equivalent to AS4276.3.1.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- MW007 is ALS's internal code and is equivalent to AS4276.5.

 Page
 : 3 of 4

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW1	QC01_20160824	MW2	MW3	SHP8
	Cli	ent sampli	ing date / time	[24-Aug-2016]	[24-Aug-2016]	[24-Aug-2016]	[24-Aug-2016]	[24-Aug-2016]
Compound	CAS Number	LOR	Unit	EP1607778-001	EP1607778-002	EP1607778-003	EP1607778-004	EP1607778-005
				Result	Result	Result	Result	Result
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	8890	8800	1480	1090	3320
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	2.68	2.86	0.53	0.57	0.36
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.20	<0.01	<0.01
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.19	0.18	13.8	0.02	0.02
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.19	0.18	14.0	0.02	0.02
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	3.0	2.9	3.1	0.7	1.5
EK062G: Total Nitrogen as N (TKN + N	NOx) by Discrete Ar	alyser						
^ Total Nitrogen as N		0.1	mg/L	3.2	3.1	17.1	0.7	1.5
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.29	0.30	0.21	0.06	0.31
EP030: Biochemical Oxygen Demand	(BOD)							
Biochemical Oxygen Demand		2	mg/L	6	6	7	4	4
MW002: Heterotrophic Plate Count								
Heterotrophic Plate Count (22°C)		1	CFU/mL	~49000	~60000	~13000	~70000	910
Heterotrophic Plate Count (36°C)		1	CFU/mL	~46000	~49000	~11000	~68000	110
MW006: Faecal Coliforms & E.coli by	MF							
Faecal Coliforms		1	CFU/100mL	~200	1100	~400	~400	~100
Escherichia coli		1	CFU/100mL	~200	1100	~400	~400	~100
MW007: Coliforms by MF								
Coliforms		1	CFU/100mL	250000	~200	~1000	~3000	~200

 Page
 : 4 of 4

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID		QC03_20160824	QC04_20160824	 	
	CI	ient sampli	ing date / time	[24-Aug-2016]	[24-Aug-2016]	 	
Compound	CAS Number	LOR	Unit	EP1607778-006	EP1607778-007	 	
				Result	Result	 	
EA015: Total Dissolved Solids dried at 180) ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	<10	<10	 	
EK055G: Ammonia as N by Discrete Analy	ser						
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	 	
EK057G: Nitrite as N by Discrete Analyse	r						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	er						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	 	
EK061G: Total Kjeldahl Nitrogen By Discre	ete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	 	
EK062G: Total Nitrogen as N (TKN + NOx)	by Discrete Ar	nalyser					
^ Total Nitrogen as N		0.1	mg/L	<0.1	<0.1	 	
EK067G: Total Phosphorus as P by Discre	te Analyser						
Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	 	
EP030: Biochemical Oxygen Demand (BOI	D)						
Biochemical Oxygen Demand		2	mg/L	5	<2	 	
MW002: Heterotrophic Plate Count							
Heterotrophic Plate Count (22°C)		1	CFU/mL			 	
Heterotrophic Plate Count (36°C)		1	CFU/mL			 	
MW006: Faecal Coliforms & E.coli by MF							
Faecal Coliforms		1	CFU/100mL			 	
Escherichia coli		1	CFU/100mL			 	
MW007: Coliforms by MF							
Coliforms		1	CFU/100mL			 	

QUALITY CONTROL REPORT

Page

: 1 of 4

: 08 9209 7655

: 25-Aug-2016

: 31-Aug-2016

Work Order : EP1607778

Client : GHD PTY LTD Laboratory : Environmental Division Perth
Contact : MR ANDREW NAGLE Contact : Lauren Biagioni

Address : 999 HAY STREET Address : 10 Hod Way Malaga WA Australia 6090

PERTH WA 6000

Telephone : +61 08 6222 8222 Telephone

Project : 61/34772 Point Moore Groundwater Assessment Date Samples Received

Order number : --- Date Analysis Commenced : 25-Aug-2016

C-O-C number : ---- Issue Date

Sampler : STEVEN PETTS

Quote number : ---
No. of samples received : 7

No. of samples analysed : 7

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alini Goundar Senior Analyst Perth Microbiology, Malaga, WA
Jeremy Truong Laboratory Manager Perth Inorganics, Malaga, WA

Tyrone Cole Inorganics Preparation Supervisor Perth Inorganics, Malaga, WA

 Page
 : 2 of 4

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA015: Total Dissolv	red Solids dried at 180 ± 5 °C	C (QC Lot: 564719)							
EP1607760-009	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	6310	6080	3.81	0% - 20%
EP1607760-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	6260	6170	1.45	0% - 20%
EK055G: Ammonia a	s N by Discrete Analyser(QC Lot: 562898)							
EP1607778-001	MW1	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	2.68	2.72	1.60	0% - 20%
EP1607791-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.09	73.8	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC	Lot: 562895)							
EP1607778-001	MW1	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 562899)							
EP1607778-001	MW1	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.19	0.17	10.2	0% - 50%
EP1607791-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.25	0.22	12.1	0% - 20%
EK061G: Total Kjelda	ahl Nitrogen By Discrete An	alyser (QC Lot: 566331)							
EP1607775-011	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.3	2.4	6.62	0% - 50%
EP1607778-006	QC03_20160824	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.1	0.00	No Limit
EK067G: Total Phos	phorus as P by Discrete Ana	alyser (QC Lot: 566330)							
EP1607775-011	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.22	0.21	0.00	0% - 50%
EP1607778-006	QC03_20160824	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP030: Biochemical	Oxygen Demand (BOD) (Q	C Lot: 562689)							
EP1607769-001	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	4	4	0.00	No Limit

 Page
 : 3 of 4

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

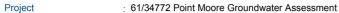
Project : 61/34772 Point Moore Groundwater Assessment

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot	:: 564719)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	99.0	83	111
				<10	293 mg/L	107	70	130
EK055G: Ammonia as N by Discrete Analyser (QCLot: 56	2898)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	109	87	115
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5628)	95)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	99.2	86	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Anal	yser (QCLot: 56	2899)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	112	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (C	CLot: 566331)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	84.8	82	110
EK067G: Total Phosphorus as P by Discrete Analyser (Q	CLot: 566330)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	86.8	70	130
EP030: Biochemical Oxygen Demand (BOD) (QCLot: 562	689)							
EP030: Biochemical Oxygen Demand		2	mg/L	<2	198 mg/L	92.8	78	117

Matrix Spike (MS) Report


The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 562898)						
EP1607778-002	QC01_20160824	EK055G: Ammonia as N	7664-41-7	1 mg/L	96.8	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 562895)						
EP1607778-002	QC01_20160824	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	107	70	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 562	2899)					
EP1607778-002	QC01_20160824	EK059G: Nitrite + Nitrate as N		0.5 mg/L	111	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 566331)						
EP1607775-011	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	90.2	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 566330)						
EP1607775-011	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	97.6	70	130

 Page
 : 4 of 4

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EP1607778** Page : 1 of 6

Client : GHD PTY LTD Laboratory : Environmental Division Perth

Contact: MR ANDREW NAGLETelephone: 08 9209 7655Project: 61/34772 Point Moore Groundwater AssessmentDate Samples Received: 25-Aug-2016Site: ----Issue Date: 31-Aug-2016

Sampler : STEVEN PETTS No. of samples received : 7

Order number : --- No. of samples analysed : 7

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 6

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

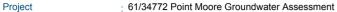
Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) MW1, MW2, SHP8, QC04_20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016				29-Aug-2016	31-Aug-2016	✓
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) MW1, MW2, SHP8, QC04_20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016				25-Aug-2016	21-Sep-2016	✓
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) MW1, MW2, SHP8, QC04_20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016				25-Aug-2016	26-Aug-2016	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) MW1, MW2, SHP8, QC04 20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016				25-Aug-2016	21-Sep-2016	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	er							
Clear Plastic Bottle - Sulfuric Acid (EK061G) MW1, MW2, SHP8, QC04 20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016	31-Aug-2016	21-Sep-2016	✓	31-Aug-2016	21-Sep-2016	✓

 Page
 : 3 of 6

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD


Project : 61/34772 Point Moore Groundwater Assessment

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) MW1, MW2, SHP8, QC04_20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016	31-Aug-2016	21-Sep-2016	✓	31-Aug-2016	21-Sep-2016	✓
EP030: Biochemical Oxygen Demand (BOD)								
Clear Plastic Bottle - Natural (EP030) MW1, MW2, SHP8, QC04_20160824	QC01_20160824, MW3, QC03_20160824,	24-Aug-2016				25-Aug-2016	26-Aug-2016	✓
MW002: Heterotrophic Plate Count								
Sterile Plastic Bottle - Sodium Thiosulfate (MW002) MW1, MW2, SHP8	QC01_20160824, MW3,	24-Aug-2016				25-Aug-2016	25-Aug-2016	✓
MW006: Faecal Coliforms & E.coli by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW006) MW1, MW2, SHP8	QC01_20160824, MW3,	24-Aug-2016				25-Aug-2016	25-Aug-2016	✓
MW007: Coliforms by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW007) MW1, MW2, SHP8	QC01_20160824, MW3,	24-Aug-2016				25-Aug-2016	25-Aug-2016	✓

 Page
 : 4 of 6

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **WATER**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

							termination, desired to the control of the control
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
							•

 Page
 : 5 of 6

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Biochemical Oxygen Demand (BOD)	EP030	WATER	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (2013) Schedule B(3)
Heterotrophic (Total) Plate Count @ 22C and 36C	MW002	WATER	In house: Referenced to AS4276.3.1- 2007
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	In house: Referenced to AS 4276.7 2007
Coliforms by Membrane Filtration	MW007	WATER	In house: Referenced to AS 4276.5 - 2007
Preparation Methods	Method	Matrix	Method Descriptions

 Page
 : 6 of 6

 Work Order
 : EP1607778

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013)
			Schedule B(3)

Point Moore Groundwater Assessment Client Client City of Greater Geraldton Laboratory Quote No.	Job No. 61/34772 Turnaround Time Standard	Laboratory:SGS Address: 28 Rei Laboratory Con	d Road, Pert tact: Carrian Contai	h Airport ne Graham ner					Analyses
	Standard								
Job Manager (Invoice) Andrew Nagle	Email Address (Results) andrew.nagle@ghd.com steven.petts@ghd.com					emand		V	ate Count at
GHD Sample ID Laboratory Sample ID		Sample Matrix S-Soil/ Type B-Bottle/J-Jar/V-V-I	Preservative Unpreser H2SO4/HNO3/Other	Total Volume (mL)	Total Nitrogen, TKN, N NH3, Total Phosphorus	Biochemical Oxygen De		TDS - Standard Level	TDS - Standard Level Total (Heterotrophic Pl 22oC and 36oC (TPC)
acoz PE110063. 121	. 00/	W BP	H2S04	3 810	×	×		×	N N
Sampled by: S. Petts		Date/Time: 24/08/2016	1/08/2016		Relinquished by: 5	ishe	d by	d by: S.Petts	S
			-	1	Relinquished by:	ishe	d by		
Received by Lab: C. Tadena	a (Jample)	Date/Time:	09118157	5000	Courier/ Transport	/ Tran	Spo		sport Company: NA

REGISTRATION DETAILS AUSTRALIA-ENVIRONMENTAL-PERTH AIRPORT- PROFORMA -QU101

		Registration comments:								Numbers:	5	Bottle Map
		nments:								Green Green Purple Green Green Green	Plastic Plastic Ambe	1L 500mL250mL500m
	(Green Green Red Green	UF/F PlasticPlasticPlasticAmberPlasticPlastic Plastic Amber	500mL250mL500mL250mL125mL 125mL 1L
						+				en Orange	ber Amber	
										Green	Amber Gla	100mL 40n
Re		Ac									ss Glass Plast	nt 40mt 50
Registered B		Action Taken:							_	Blue Orange Brown	0	
Y.		:									Plastic G	125mL 25
							-			1		0mL 125
										-		mL 1L
										Yellow Supplied	Plastic Bottles	Lab
CT 26/8/16										0.	s Bag/ Otner	Ziplock
6/8/16			1745-M	Tray Numbers:	Temp: /A °C	0		8	Esky Numbers:	# of Eskies:	PE 110063	Job Number:

DIT. DI ALI TANI DAD OLIADARIA- AMO AA OOMO DAO TAO TO

ANALYTICAL REPORT

CLIENT DETAILS -

Contact Client

Andrew Nagle

Address

GHD Pty Ltd

(PO Box Y3106 PERTH WA 6832)

239 Adelaide Terrace

EAST PERTH WA 6004

Telephone Facsimile

08 6222 8222 08 6222 8555

Email

andrew.nagle@ghd.com

Project

61/34772_Point Moore Groundwater

61/34772 Order Number Samples 1

LABORATORY DETAILS

Manager Laboratory

Address

Telephone

SGS Reference

Date Received

Date Reported

Email

SGS Perth Environmental

28 Reid Rd

Ros Ma

Perth Airport WA 6105

(08) 9373 3500

(08) 9373 3556 Facsimile

au.environmental.perth@sgs.com

PE110063 R0

24 Aug 2016 02 Sep 2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(898/20210).

SIGNATORIES

Louise Hope

Laboratory Technician

Lorisettope

Michael McKay

Inorganics and ARD Supervisor

Rachel Harrison

Inorganics Team Leader

Radel Horsen

ANALYTICAL REPORT

PE110063 R0

	S	nple Number ample Matrix Sample Date ample Name	PE110063.001 Water 24 Aug 2016 QC02
Parameter	Units	LOR	
Total Dissolved Solids (TDS) in water Method: AN113 Tes	ted: 1/9/2016		
Total Dissolved Solids Dried at 175-185°C	mg/L	10	7500
CBOD5 Method: AN183 Tested: 26/8/2016			
Biochemical Oxygen Demand (CBOD5)	mg/L	5	<5
Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method:	AN258 Tested	d: 29/8/2016	
Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	0.17
Nitrate/Nitrite Nitrogen, NOx as N Nitrite, NO ₂ as NO ₂	mg/L	0.05	0.17 <0.2
· · · · · · · · · · · · · · · · · · ·			
Nitrite, NO ₂ as NO ₂	mg/L mg/L	0.2	<0.2
Nitrite, NO ₂ as NO ₂ Nitrate, NO ₃ as NO ₃	mg/L mg/L	0.2	<0.2
Nitrite, NO ₂ as NO ₂ Nitrate, NO ₃ as NO ₃ Ammonia Nitrogen by FIA Method: AN261 Tested: 29/8/20	mg/L mg/L	0.2	<0.2
Nitrite, NO ₂ as NO ₂ Nitrate, NO ₃ as NO ₃ Ammonia Nitrogen by FIA Method: AN261 Tested: 29/8/20 Ammonia, NH ₃	mg/L mg/L	0.2	<0.2
Nitrite, NO ₂ as NO ₂ Nitrate, NO ₃ as NO ₃ Ammonia Nitrogen by FIA Method: AN261 Tested: 29/8/20 Ammonia, NH ₃ TKN Kjeldahl Digestion by Discrete Analyser Method: AN28 Total Kjeldahl Nitrogen	mg/L mg/L)116 mg/L 11 Tested: 31/	0.2 0.2 0.05 8/2016	<0.2 0.7 2.9

02-September-2016 Page 2 of 6

ANALYTICAL REPORT

PE110063 R0

		Sai S	ple Numbe mple Matri ample Dat mple Nam	ix Water te 24 Aug 2016
Parameter		Units	LOR	
Calculated Nitrogen Forms - TN, organic N, inorganic N	Metho	od: AN281/292	Tested	d: 2/9/2016
Total Nitrogen (calc)		mg/L	0.05	3.2

02-September-2016 Page 3 of 6

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Ammonia Nitrogen by FIA Method: ME-(AU)-[ENV]AN261

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
ı		Reference					%Recovery
ı	Ammonia, NH₃	LB121813	mg/L	0.05	<0.05	0%	NA

CBOD5 Method: ME-(AU)-[ENV]AN183

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
н		Reference					%Recovery
	Biochemical Oxygen Demand (CBOD5)	LB121787	mg/L	5	<5	4%	88 - 90%

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENV]AN258

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
ı		Reference					%Recovery
ı	Nitrate/Nitrite Nitrogen, NOx as N	LB121813	mg/L	0.05	<0.05	0 - 5%	102 - 107%

TKN Kjeldahl Digestion by Discrete Analyser Method: ME-(AU)-[ENV]AN281

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
ı		Reference					%Recovery
	Total Kjeldahl Nitrogen	LB121936	mg/L	0.05	<0.05	0 - 6%	105%

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

	Parameter	QC	Units	LOR	МВ	DUP %RPD	LCS	MS	MSD %RPD
1		Reference					%Recovery	%Recovery	
ı	Total Dissolved Solids Dried at 175-185°C	LB121986	mg/L	10	<10	1%	104%	102%	2%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
п		Reference					%Recovery
ı	Total Phosphorus (Kjeldahl Digestion)	LB121936	mg/L	0.02	<0.02	0 - 4%	103%

02-September-2016 Page 4 of 6

METHOD SUMMARY

METHOD -

METHODOLOGY SUMMARY

Nitrate and Nitrite by FIA: In an acidic medium, nitrate is reduced quantitatively to nitrite by cadmium metal. This nitrite plus any original nitrite is determined as an intense red-pink azo dye at 540 nm following diazotisation with sulphanilamide and subsequent coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. Without the cadmium reduction only the original nitrite is determined. Reference APHA 4500-NO3- F.

AN106

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.

AN113

Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.

AN183

BOD: Serial dilutions of the sample are firstly combined with various reagents to aid bacterial growth and the sample is incubated for 5 days at 20°C. The difference between the initial and final oxygen contents of the sample is the amount of oxygen consumed by the bacteria. This is related to the organic loading of the sample therefore cBOD is the measure of the digestibility or bioavailability of organic matter in the sample. Reference APHA 5210 B. Internal Reference AN183

AN261

Ammonia by Continuous Flow Analyser: Ammonium in a basic medium forms ammonia gas, which is separated from the sample matrix by diffusion through a polypropylene membrane. The ammonia is reacted with phenol and hypochlorite to form indophenol blue at an intensity proportional to the ammonia concentration. The blue colour is intensified with sodium nitroprusside and the absorbance measured at 630 nm. The sensitivity of the automated method is 10-20 times that of the macro method. Reference APHA 4500-NH3 H.

AN279/AN293(Sydney)

The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.

AN281

An unfiltered water or soil sample is first digested in a block digestor with sulfuric acid, K2SO4 and CuSO4. The ammonia produced following digestion is then measured colourimetrically using the Aquakem 250 Discrete Analyser. A portion of the digested sample is buffered to an alkaline pH, and interfering cations are complexed. The ammonia then reacts with salicylate and hypochlorite to give a blue colour whose absorbance is measured at 660nm and compared with calibration standards. This is proportional to the concentration of Total Kjeldahl Nitrogen in the original sample.

AN281/292

Calculation of total nitrogen and organic nitrogen.

02-September-2016 Page 5 of 6

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the

performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance

- The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

02-September-2016 Page 6 of 6

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

Andrew Nagle Ros Ma Manager Contact GHD Pty Ltd SGS Perth Environmental Laboratory Client

Address (PO Box Y3106 PERTH WA 6832) Address 28 Reid Rd

239 Adelaide Terrace

Perth Airport WA 6105 EAST PERTH WA 6004

08 6222 8222 (08) 9373 3500 Telephone Telephone 08 6222 8555 (08) 9373 3556 Facsimile Facsimile

andrew.nagle@ghd.com au.environmental.perth@sgs.com Email Email

61/34772_Point Moore Groundwater PE110063 R0 SGS Reference Project 61/34772 24 Aug 2016 Order Number Date Received

02 Sep 2016 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA 1 item

Total Dissolved Solids (TDS) in water 1 item

Analysis Date Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA 1 item

> Total Dissolved Solids (TDS) in water 1 item

SAMPLE SUMMARY

Sample counts by matrix 1 water Type of documentation received COC Date documentation received 26/8/2016 Samples received in good order Yes 12°C Samples received without headspace Yes Sample temperature upon receipt Sample container provider ALS. Turnaround time requested Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Bricks Samples clearly labelled Yes Complete documentation received Yes Number of eskies/boxes received 1

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

28 Reid Rd

Perth Airport WA 6105

Australia

t +61 8 9373 3500

www.sgs.com.au

Member of the SGS Group

f +61 8 9373 3556 PO Box 32 Welshpool WA 6983 Australia

Method: ME-(AU)-[ENV]AN261

29 Aug 2016

Analysis Due Analysed

21 Sep 2016

Sample No.

PE110063.001

QC Ref

LB121813

24 Aug 2016

Ammonia Nitrogen by FIA

Sample Name

QC02

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

24 Aug 2016

21 Sep 2016

29 Aug 2016

CBOD5							Method:	ME-(AU)-[ENV]AN18			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
QC02	PE110063.001	LB121787	24 Aug 2016	24 Aug 2016	26 Aug 2016	26 Aug 2016	02 Sep 2016	31 Aug 2016			
Nitrate Nitrogen and Nitri	itrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENV]AN25										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
QC02	PE110063.001	LB121813	24 Aug 2016	24 Aug 2016	28 Aug 2016	29 Aug 2016†	28 Aug 2016	29 Aug 2016†			
TKN Kjeldahl Digestion b	y Discrete Analyser						Method:	ME-(AU)-[ENV]AN28			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
QC02	PE110063.001	LB121936	24 Aug 2016	24 Aug 2016	21 Sep 2016	31 Aug 2016	21 Sep 2016	02 Sep 2016			

Total Dissolved Solids (TD:	S) in water						Method: I	ME-(AU)-[ENV]AN113
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

QC02	PE110063.001	LB121986	24 Aug 2016	24 Aug 2016	31 Aug 2016	01 Sep 2016†	31 Aug 2016	01 Sep 2016†		
Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QC02	PE110063.001	LB121936	24 Aug 2016	24 Aug 2016	21 Sep 2016	31 Aug 2016	21 Sep 2016	02 Sep 2016		

2/9/2016 Page 2 of 9

SURROGATES

PE110063 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

2/9/2016 Page 3 of 9

METHOD BLANKS

PE110063 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Ammonia Nitrogen by FIA

Method: ME-(AU)-[ENV]AN261

Sample Number	Parameter	Units	LOR	Result
LB121813.001	Ammonia, NH₃	mg/L	0.05	<0.05
LB121813.025	Ammonia, NH₃	mg/L	0.05	<0.05
LB121813.049	Ammonia, NH₃	mg/L	0.05	<0.05
LB121813.073	Ammonia, NH₃	mg/L	0.05	<0.05
LB121813.097	Ammonia, NH₃	mg/L	0.05	<0.05

CBOD5

Method: ME-(AU)-[ENV]AN183 Sample Numb LOR Result LB121787.001 Biochemical Oxygen Demand (CBOD5) mg/L <5 LB121787.003 Biochemical Oxygen Demand (CBOD5) mg/L

TKN Kjeldahl Digestion by Discrete Analyser

Method: ME-(AU)-[ENV]AN281

Sample Number	Parameter	Units	LOR	Result
LB121936.001	Total Kjeldahl Nitrogen	mg/L	0.05	<0.05

Total Dissolved Solids (TDS) in water

Method: ME-(AU)-[ENV]AN113

Sample Number	Parameter	Units	LOR	Result
LB121986.001	Total Dissolved Solids Dried at 175-185°C	mg/L	10	<10

Total Phosphorus by Kjeldahl Digestion DA in Water

Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

Sample Number	Parameter	Units	LOR	Result
LB121936.001	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	<0.02

2/9/2016 Page 4 of 9

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Ammonia Nitrogen by FIA Method: ME-(AU)-[ENV]AN261

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE109968.007	LB121813.013	Ammonia, NH₃	mg/L	0.05	-0.0133571428	30.0218571428	200	0
PE110086.002	LB121813.102	Ammonia, NH ₃	mg/L	0.05	0.0497857142	0.0497857142	115	0

CBOD5 Method: ME-(AU)-[ENV]AN183

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE110067.001	LB121787.010	Biochemical Oxygen Demand (CBOD5)	mg/L	5	324	337	17	4

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA

Method: ME-(AU)-[ENV]AN258

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE109968.007	LB121813.013	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	0.219	0.21	38	4
PE109995.001	LB121813.028	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	34.44	33.99	15	1
PE109995.011	LB121813.039	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	57.106	58.26	15	2
PE110020.001	LB121813.054	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	3.24	3.575	16	0
PE110043.001	LB121813.065	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	4.27	4.29	16	0
PE110079.005	LB121813.080	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	14.37	15.169	15	5
PE110079.015	LB121813.091	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	2.902	2.901	17	0
PE110086.002	LB121813.106	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	7.633	7.556	16	1
PE110090.002	LB121813.111	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	1.775	1.775	18	0

TKN Kjeldahl Digestion by Discrete Analyser

Method: ME-(AU)-[ENV]AN281

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE109742A.001	LB121936.027	Total Kjeldahl Nitrogen	mg/L	0.05	0.016	0.083	116	50
PE109987.001	LB121936.006	Total Kjeldahl Nitrogen	mg/L	0.05	55.313	58.528	15	6
PE110035.001	LB121936.015	Total Kjeldahl Nitrogen	mg/L	0.05	82.949	82.868	15	0
PE110082.006	LB121936.035	Total Kjeldahl Nitrogen	mg/L	0.05	12	13	15	6

Total Dissolved Solids (TDS) in water

Method: ME-(AU)-[ENV]AN113

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE110087.004	LB121986.015	Total Dissolved Solids Dried at 175-185°C	mg/L	10)49.34281404	064.192387805		1
PE110088.002	LB121986.023	Total Dissolved Solids Dried at 175-185°C	mg/L	10		08.256652573	16	1

Total Phosphorus by Kjeldahl Digestion DA in Water

Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE109742A.001	LB121936.027	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	0.013	0.012	175	0
PE109987.001	LB121936.006	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	3.4	3.5	16	4
PE110035.001	LB121936.015	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	8.053	7.817	15	3
PE110082.006	LB121936.035	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	9.3	9.2	15	0

2/9/2016 Page 5 of 9

LABORATORY CONTROL SAMPLES

PE110063 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

CBOD5 Method: ME-(AU)-[ENV]AN183

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121787.005	Biochemical Oxygen Demand (CBOD5)	mg/L	5	180	198	80 - 120	90
LB121787.007	Biochemical Oxygen Demand (CBOD5)	mg/L	5	180	198	80 - 120	88

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA

Method: ME-(AU)-[ENV]AN258

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121813.002	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	4.1	4	85 - 115	102
LB121813.027	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	4.2	4	85 - 115	106
LB121813.052	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	4.2	4	85 - 115	106
LB121813.077	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	4.2	4	85 - 115	106
LB121813.102	Nitrate/Nitrite Nitrogen, NOx as N	mg/L	0.05	4.3	4	85 - 115	107

TKN Kjeldahl Digestion by Discrete Analyser

Method: ME-(AU)-[ENV]AN281

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121936.002	Total Kjeldahl Nitrogen	mg/L	0.05	1.0	1	80 - 120	105

Total Dissolved Solids (TDS) in water

Method: ME-(AU)-[ENV]AN113

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121986.002	Total Dissolved Solids Dried at 175-185°C	mg/L	10	310	300	80 - 120	104

Total Phosphorus by Kjeldahl Digestion DA in Water

Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121936.002	Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	0.52	0.5	80 - 120	103

2/9/2016 Page 6 of 9

MATRIX SPIKES

PE110063 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Dissolved Solids (TDS) in water

Method: ME-(AU)-[ENV]AN113

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
PE109998.001	LB121986.004	Total Dissolved Solids Dried at 175-185°C	mg/L	10	1300	270	1000	102

2/9/2016 Page 7 of 9

MATRIX SPIKE DUPLICATES

PE110063 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = $100 \times SDL / Mean + LR$

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Dissolved Solids (TDS) in water

Method: ME-(AU)-[ENV]AN113

QC Sample	Sample Number	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
PE109998.001	LB121986.005	Total Dissolved Solids Dried at 175-185°C	mg/L	10	1300	1300	16	2

2/9/2016 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service.
- Sample not analysed for this analyte.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Low surrogate recovery due to the sample emulsifying during extraction.
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

2/9/2016 Page 9 of 9

CHAIN OF CUSTORDY RECORD	ANI
ANALYSIS REQUEST	

CLIENTS PEOPLE PERFORMANCE GHD House 233
Adelaide Terrace Perth WA

6004

PO Box Y3106

Perth WA 6832

Telephone 08 6222 8222 Facsimile 08 6222 8555

Page 1 of 1

COC No.

Point Moore Groundwater Assessment Laboratory:ALS Client Job No. Address: 10 Hod Way, Malaga 6090 City of Greater Geraldton 61/34772 Laboratory Contact: Lauren Biagioni Laboratory Quote No. Turnaround Time Container Analyses Remarks EP/919/16 Standard Total Volume (mL) Job Manager (Invoice) Email Address (Results) Andrew Nagle andrew.nagle@ghd.com steven. petts@ghd.com GHD Sample ID Laboratory Sample ID Date Time NT-8 무 X X Environmental Division X $|\mathbf{x}|$ IXI MW1 W ΒP H2SO4 3 810 Perth 2 Work Order Reference
EP1608944 $|\mathbf{x}|$ X $|\mathbf{x}|$ X X QC01 20160922 W BP H2SO4 810 3 X X X $|\mathbf{x}|$ IXI MW2 W BP H2SO4 810 3 $|\mathbf{x}|$ \boxtimes $|\mathbf{x}|$ $|\mathbf{x}|$ $|\mathbf{X}|$ мwз W BP H2SO4 3 810 2 $|\mathbf{x}|$ \times X $|\mathbf{x}|$ X SHP8 810 W BP H2SO4 X \times X $|\mathbf{x}|$ QC03 20160922 W BP H2SO4 2 560 felephone: + 61-8-9209 7655 X $|\mathbf{X}|$ \times X QC04_20160922 W BP H2SO4 560 Sampled by: S. Petts Date/Time: 22/09/2016 Relinquished by: 5.Petts Date/ Time: 22/09/2016 Received by: Relinquished by: Date/ Time: Received by Lab: い しょいり Date/Time: 221916 1015 Courier/ Transport Company: NA Sample Conditions: Remarks:

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EP1608944

Client : GHD PTY LTD Laboratory : Environmental Division Perth

Contact : MR ANDREW NAGLE Contact : Lauren Biagioni

Address : 999 HAY STREET Address : 10 Hod Way Malaga WA Australia 6090

PERTH WA 6000

Telephone : +61 08 6222 8222 Telephone : 08 9209 7655
Facsimile : +61 08 9429 6555 Facsimile : +61-8-9209 7600

Project : 61/34772 Point Moore Groundwater Page : 1 of 2

Assessment

 Order number
 : ====
 Quote number
 : EP2016GHDSER0029 (EP/919/16 V2)

 C-O-C number
 : ====
 QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : STEVEN PETTS

Dates

Date Samples Received : 23-Sep-2016 10:15 AM Issue Date : 23-Sep-2016

Client Requested Due : 03-Oct-2016 Scheduled Reporting Date : 03-Oct-2016

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not intact.

No. of coolers/boxes : 7 Temperature : 18.9 - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 7 / 7

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples, samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of Work Order.
- pH analysis should be conducted within 6 hours of sampling.

Issue Date : 23-Sep-2016

Page

: 2 of 2 : EP1608944 Amendment 0 Work Order

Client : GHD PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determin tasks, that are inclif no sampling default to 15:00 date is provided the laboratory for	may contain ad ation of moisture uded in the package. time is provided, on the date of sail, the sampling dat		15H 3 Solids - High Level	30	M5 - ES/EB/FM & TC by MF	002 (22C and 36C) Colony Count (22C & 36C))8 + NO2 + NO3 + NH3 + Total P
Matrix: WATER			WATER - EA015H Fotal Dissolved Sc	R - EP030	1 - 1	- MW ophic	WATER - NT-08 Total Nitrogen +
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER Total Dis	WATER	WATER FC, E.co	WATER Heterotr	WATER Total Nit
EP1608944-001	[23-Sep-2016]	MW1	✓	✓	✓	✓	✓
EP1608944-002	[23-Sep-2016]	QC01_20160922	✓	✓	✓	✓	✓
EP1608944-003	[23-Sep-2016]	MW2	✓	✓	✓	✓	✓
EP1608944-004	[23-Sep-2016]	MW3	✓	✓	✓	✓	✓
EP1608944-005	[23-Sep-2016]	SHP8	✓	✓	✓	✓	✓
EP1608944-006	[23-Sep-2016]	QC03_20160922	✓	✓			✓
EP1608944-007	[23-Sep-2016]	QC04_20160922	✓	✓			1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (Perth)

· · · /		
- A4 - AU Tax Invoice (INV)	Email	ap-fss@ghd.com
ANDREW NAGLE		
 *AU Certificate of Analysis - NATA (COA) 	Email	andrew.nagle@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	andrew.nagle@ghd.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	andrew.nagle@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	andrew.nagle@ghd.com
- Chain of Custody (CoC) (COC)	Email	andrew.nagle@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	andrew.nagle@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	andrew.nagle@ghd.com
- EDI Format - XTab (XTAB)	Email	andrew.nagle@ghd.com
STEVEN PETTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	steven.petts@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	steven.petts@ghd.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	steven.petts@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	steven.petts@ghd.com
- Chain of Custody (CoC) (COC)	Email	steven.petts@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	steven.petts@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	steven.petts@ghd.com
- EDI Format - XTab (XTAB)	Email	steven.petts@ghd.com

CERTIFICATE OF ANALYSIS

Work Order : EP1608944

: GHD PTY LTD

Contact : MR ANDREW NAGLE

Address : 999 HAY STREET

PERTH WA 6000

Telephone : +61 08 6222 8222

Project : 61/34772 Point Moore Groundwater Assessment

Order number : ----

Client

C-O-C number : ----

Sampler : STEVEN PETTS

Site : ---Quote number : ---No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Lauren Biagioni

Address : 10 Hod Way Malaga WA Australia 6090

Telephone : 08 9209 7655

Date Samples Received : 23-Sep-2016 10:15

Date Analysis Commenced : 23-Sep-2016

Issue Date : 03-Oct-2016 20:21

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alini Goundar Senior Analyst Perth Microbiology, Malaga, WA
Jeremy Truong Laboratory Manager Perth Inorganics, Malaga, WA
Tyrone Cole Inorganics Preparation Supervisor Perth Inorganics, Malaga, WA
Vinitha Kesavan Analyst Perth Microbiology, Malaga, WA

 Page
 : 2 of 4

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- CFU = colony forming unit
- MF = membrane filtration
- MW006 and MW007: estimate (~) is reported where the growth of presumptive bacteria on the filtered membrane is counted <10 cfu and/or >100 cfu and where there are many non-target colonies; the typical colonies may be masked by overgrowth of non-target organisms. It may be informative to record this fact.
- MW002 is ALS's internal code and is equivalent to AS4276.3.1.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- MW007 is ALS's internal code and is equivalent to AS4276.5.

 Page
 : 3 of 4

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW1	QC01_20160922	MW2	MW3	SHP8
	Cli	ent sampli	ing date / time	[23-Sep-2016]	[23-Sep-2016]	[23-Sep-2016]	[23-Sep-2016]	[23-Sep-2016]
Compound	CAS Number	LOR	Unit	EP1608944-001	EP1608944-002	EP1608944-003	EP1608944-004	EP1608944-005
				Result	Result	Result	Result	Result
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	22300	22400	2120	1320	10300
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	6.28	6.42	0.13	0.78	2.54
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	1.85	<0.01	<0.01
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.05	<0.01	9.95	0.01	0.03
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.05	<0.01	11.8	0.01	0.03
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	6.7	6.7	2.0	0.9	3.3
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	6.8	6.7	13.8	0.9	3.3
EK067G: Total Phosphorus as P by Di	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.81	0.90	0.14	0.08	0.38
EP030: Biochemical Oxygen Demand	(BOD)							
Biochemical Oxygen Demand		2	mg/L	31	22	4	5	22
MW002: Heterotrophic Plate Count								
Heterotrophic Plate Count (22°C)		1	CFU/mL	72	73	1700	2400	12
Heterotrophic Plate Count (36°C)		1	CFU/mL	170	140	12000	2100	17
MW006: Faecal Coliforms & E.coli by	MF							
Faecal Coliforms		1	CFU/100mL	<1	<1	~<1	~1	<1
Escherichia coli		1	CFU/100mL	<1	<1	~<1	~1	<1
MW007: Coliforms by MF						<u> </u>		
Coliforms		1	CFU/100mL	<1	<1	~10	~10	<1

 Page
 : 4 of 4

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	QC03_20160922	QC04_20160922	 	
	Cli	ent sampli	ing date / time	[23-Sep-2016]	[23-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	EP1608944-006	EP1608944-007	 	
				Result	Result	 	
EA015: Total Dissolved Solids dried at	180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	20	<10	 	
EK055G: Ammonia as N by Discrete An	alyser						
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	 	
EK057G: Nitrite as N by Discrete Analy	ser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analy	yser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	 	
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	 	
EK062G: Total Nitrogen as N (TKN + NC	0x) by Discrete An	alyser					
^ Total Nitrogen as N		0.1	mg/L	<0.1	<0.1	 	
EK067G: Total Phosphorus as P by Dis	crete Analyser						
Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	 	
EP030: Biochemical Oxygen Demand (E	BOD)						
Biochemical Oxygen Demand		2	mg/L	<2	<2	 	
MW002: Heterotrophic Plate Count							
Heterotrophic Plate Count (22°C)		1	CFU/mL			 	
Heterotrophic Plate Count (36°C)		1	CFU/mL			 	
MW006: Faecal Coliforms & E.coli by M	F						
Faecal Coliforms		1	CFU/100mL			 	
Escherichia coli		1	CFU/100mL			 	
MW007: Coliforms by MF							
Coliforms		1	CFU/100mL			 	

QUALITY CONTROL REPORT

EP1608944 Work Order Page

Client GHD PTY LTD

Contact : MR ANDREW NAGLE

Address : 999 HAY STREET

PERTH WA 6000

Telephone : +61 08 6222 8222

Project : 61/34772 Point Moore Groundwater Assessment

Order number

: STEVEN PETTS Sampler

Site

Quote number : ----No. of samples received : 7

No. of samples analysed : 7 : 1 of 4

Laboratory : Environmental Division Perth

Contact : Lauren Biagioni

Address : 10 Hod Way Malaga WA Australia 6090

Telephone : 08 9209 7655 Date Samples Received : 23-Sep-2016 **Date Analysis Commenced** : 23-Sep-2016

· 03-Oct-2016 Issue Date

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Alini Goundar Senior Analyst Perth Microbiology, Malaga, WA Jeremy Truong Laboratory Manager Perth Inorganics, Malaga, WA Tyrone Cole **Inorganics Preparation Supervisor** Perth Inorganics, Malaga, WA Vinitha Kesavan Analyst Perth Microbiology, Malaga, WA

 Page
 : 2 of 4

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

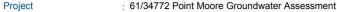
CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report


The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

EA015: Total Dissolved Solids dried at 180 ± 5 °C (QC Lot: 602290) EP1608944-001 MW1 EA015H: Total Dissolved Solids @180 °C 10 mg/L 22300 21700 2.96 0% - 20% EP1609004-002 Anonymous EA015H: Total Dissolved Solids @180 °C 10 mg/L 227 222 2.45 0% - 20% EK055G: Ammonia as N by Discrete Analyser (QC Lot: 595630) EP1608932-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.03 0.04 0.00 No Limit EP1608944-002 QC01_20160922 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 6.42 6.47 0.792 0% - 20% EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L < 0.01 < 0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L < 0.01 < 0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L < 0.01 < 0.01 0.00 No Limit EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	Sub-Matrix: WATER						Laboratory D	Ouplicate (DUP) Report		
EP1608944-001 MW1 EA015H: Total Dissolved Solids @180°C 10 mg/L 22300 21700 2.96 0% - 20% EP1609004-002 Anonymous EA015H: Total Dissolved Solids @180°C 10 mg/L 227 222 2.45 0% - 20% EK055G: Ammonia as N by Discrete Analyser (QC Lot: 595630) EP1608932-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.03 0.04 0.00 No Limit EP1608944-002 QC01_20160922 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 6.42 6.47 0.792 0% - 20% EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 <0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 <0.01 0.00 No Limit EV6059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP1609004-002 Anonymous EA015H: Total Dissolved Solids @180°C 10 mg/L 227 222 2.45 0% - 20% EK055G: Ammonia as N by Discrete Analyser (QC Lot: 595630) EP1608932-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.03 0.04 0.00 No Limit EP1608944-002 QC01_20160922 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 6.42 6.47 0.792 0% - 20% EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	EA015: Total Dissolv	ed Solids dried at 180 ± 5 °C	(QC Lot: 602290)							
EK055G: Ammonia as N by Discrete Analyser (QC Lot: 595630) EP1608932-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.03 0.04 0.00 No Limit EP1608944-002 QC01_20160922 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 6.42 6.47 0.792 0% - 20% EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	EP1608944-001	MW1	EA015H: Total Dissolved Solids @180°C		10	mg/L	22300	21700	2.96	0% - 20%
EP1608932-001 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.03 0.04 0.00 No Limit EP1608944-002 QC01_20160922 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 6.42 6.47 0.792 0% - 20% EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01	EP1609004-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	227	222	2.45	0% - 20%
EP1608944-002 QC01_20160922 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 6.42 6.47 0.792 0% - 20% EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	EK055G: Ammonia a	s N by Discrete Analyser (C	C Lot: 595630)							
EK057G: Nitrite as N by Discrete Analyser (QC Lot: 595643) EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	EP1608932-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.04	0.00	No Limit
EP1608944-001 MW1 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit EP1608946-004 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01	EP1608944-002	QC01_20160922	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	6.42	6.47	0.792	0% - 20%
EP1608946-004 Anonymous EK057G: Nitrite as N (NOx) by Discrete Analyser (QC Lot: 595631)	EK057G: Nitrite as N	by Discrete Analyser (QC	Lot: 595643)							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 595631)	EP1608944-001	MW1	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
	EP1608946-004	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1608932-001 Anonymous FK059G: Nitrite + Nitrate as N 0.01 mg/L <0.01 <0.01 0.00 No Limit	EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 595631)							
,	EP1608932-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1608944-002 QC01_20160922 EK059G: Nitrite + Nitrate as N 0.01 mg/L <0.01 0.02 0.00 No Limit	EP1608944-002	QC01_20160922	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.02	0.00	No Limit
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 602454)	EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	alyser (QC Lot: 602454)							
EP1608944-005 SHP8 EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 3.3 3.3 0.00 0% - 20%	EP1608944-005	SHP8	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.3	3.3	0.00	0% - 20%
EP1608957-004 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.5 1.0 61.4 No Limit	EP1608957-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	1.0	61.4	No Limit
EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 602453)	EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 602453)							
EP1608944-005 SHP8 EK067G: Total Phosphorus as P 0.01 mg/L 0.38 0.39 3.39 0% - 20%	EP1608944-005	SHP8	EK067G: Total Phosphorus as P		0.01	mg/L	0.38	0.39	3.39	0% - 20%
EP1608957-004 Anonymous EK067G: Total Phosphorus as P 0.01 mg/L <0.05 0.05 0.00 No Limit	EP1608957-004	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.05	0.05	0.00	No Limit
EP030: Biochemical Oxygen Demand (BOD) (QC Lot: 595538)	EP030: Biochemical	Oxygen Demand (BOD) (QC	Lot: 595538)							
EP1608905-002 Anonymous EP030: Biochemical Oxygen Demand 2 mg/L 245 253 3.13 0% - 20%	EP1608905-002	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	245	253	3.13	0% - 20%
EP1608944-004 MW3 EP030: Biochemical Oxygen Demand 2 mg/L 5 4 24.4 No Limit	EP1608944-004	MW3	EP030: Biochemical Oxygen Demand		2	mg/L	5	4	24.4	No Limit

 Page
 : 3 of 4

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCL	ot: 602290)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	96.8	83	111
				<10	293 mg/L	112	70	130
EK055G: Ammonia as N by Discrete Analyser (QCLot:	595630)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	107	87	115
EK057G: Nitrite as N by Discrete Analyser (QCLot: 595	643)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	107	86	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 595	631)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	110	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 602454)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	85.4	82	110
EK067G: Total Phosphorus as P by Discrete Analyser(QCLot: 602453)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	90.6	70	130
EP030: Biochemical Oxygen Demand (BOD) (QCLot: 59	95538)							
EP030: Biochemical Oxygen Demand		2	mg/L	<2	198 mg/L	90.4	78	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 595630)						
EP1608932-002	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	127	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 595643)						
EP1608944-002	QC01_20160922	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	91.1	70	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 595	5631)					
EP1608932-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	110	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 602454)						
EP1608944-006	QC03_20160922	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	88.1	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 602453)						
EP1608944-006	QC03_20160922	EK067G: Total Phosphorus as P		1 mg/L	95.9	70	130

Page EP1608944 Work Order Client

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EP1608944** Page : 1 of 6

Client : GHD PTY LTD Laboratory : Environmental Division Perth

Contact : MR ANDREW NAGLE : 08 9209 7655

Project : 61/34772 Point Moore Groundwater Assessment Date Samples Received : 23-Sep-2016

Site :--- Issue Date : 03-Oct-2016

Sampler : STEVEN PETTS No. of samples received : 7
Order number : ---- No. of samples analysed : 7

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 6

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: ★ = Holding time breach: ✓ = Within holding time.

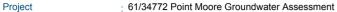
IVIALITA. WATER					Lvaiuatioi	i. × - Holding time	breach, V - Willin	ii noluling tii
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5	°C							
Clear Plastic Bottle - Natural (EA015H)								
MW1,	QC01_20160922,	23-Sep-2016				30-Sep-2016	30-Sep-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	21-Oct-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	25-Sep-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								
EK059G: Nitrite plus Nitrate as N (NOx) by Dis	screte Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	21-Oct-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								
EK061G: Total Kjeldahl Nitrogen By Discrete A	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
MW1,	QC01_20160922,	23-Sep-2016	03-Oct-2016	21-Oct-2016	✓	03-Oct-2016	21-Oct-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								

 Page
 : 3 of 6

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment



Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G)								
MW1,	QC01_20160922,	23-Sep-2016	03-Oct-2016	21-Oct-2016	✓	03-Oct-2016	21-Oct-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								
EP030: Biochemical Oxygen Demand (BOD)								
Clear Plastic Bottle - Natural (EP030)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	25-Sep-2016	✓
MW2,	MW3,							
SHP8,	QC03_20160922,							
QC04_20160922								
MW002: Heterotrophic Plate Count								
Sterile Plastic Bottle - Sodium Thiosulfate (MW002)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	24-Sep-2016	✓
MW2,	MW3,							
SHP8								
MW006: Faecal Coliforms & E.coli by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW006)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	24-Sep-2016	✓
MW2,	MW3,							
SHP8								
MW007: Coliforms by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW007)								
MW1,	QC01_20160922,	23-Sep-2016				23-Sep-2016	24-Sep-2016	✓
MW2,	MW3,							
SHP8								

 Page
 : 4 of 6

 Work Order
 : EP1608944

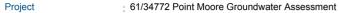
 Client
 : GHD PTY LTD

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER


Evaluation: ★ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

 Page
 : 5 of 6

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Biochemical Oxygen Demand (BOD)	EP030	WATER	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (2013) Schedule B(3)
Heterotrophic (Total) Plate Count @ 22C and 36C	MW002	WATER	In house: Referenced to AS4276.3.1- 2007
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	In house: Referenced to AS 4276.7 2007
Coliforms by Membrane Filtration	MW007	WATER	In house: Referenced to AS 4276.5 - 2007
Preparation Methods	Method	Matrix	Method Descriptions

 Page
 : 6 of 6

 Work Order
 : EP1608944

 Client
 : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013)
			Schedule B(3)

CHAIN OF CUSTORD		GHD CLIENTS PEO	PLE PERFORMANCE	Adelaide T 6004	errace P		PO Box Y3 Perth WA		Telephor 8555	e 08 6222	8222 Fac	simile 08 62	222 P	age 1	of	1			С	OC No.
ANALYSIS REQUEST		Bernama			orv:MPL L	aboratorie	s													
Point Moore Ground Client	JWater Assessment	Job No.		Address: 16-18 Hayden Court Myaree WA 6154																
City of Greater Gera	ldton	61/34772		Laboratory Contact: Kiara Lockerbie																
Laboratory Quote No. Turnaround Time				1000		Contair								Analyses						Remarks
caporatory Quote in		Standard		Water/ A-Air	/P-Plastic	H2SO4/HNO3/Other			33,			ıt	MF)							
Job Manager (Invoid Andrew Nagle	ce)	Email Address (Result andrew.nagle@ghd.co steven. petts@ghd.co	om	.L-Sludge/ W-	/Bag/G-Glass	ed/ HCI/ H2S			x, NO2, NC	mand		ate Count at EA	& E. Coli (MF)							
GHD Sample ID	Laboratory Sample ID	Date	Time	Sample Matrix s-soil/ s	Type B-Bottle/J-Jar/V-Vial/	Preservative Unpreserv	No	Total Volume (mL)	Total Nitrogen, TKN, Nox, NO2, NO3, NH3, Total Phosphorus	Biochemical Oxygen Demand	TDS - Standard Level	Total (Heterotrophic Plate C 22oC and 36oC (TPC) YEA	Total +Faecal Coliforms						Hold	
QC02_20160922				w	ВР	H2SO4	3	810	X	X	X	X	X							ENVÎROLÂD
							3 1											Labo	ratorie	(0007)
				NAME OF													Job	No		6264
										N.							Dat	e Hec		19
																-	LTm	e Rec	1	45
	Market Land						100										Re	By-	N	*
																	TAT	Reg.	SAM	1/2/3(\$TD)
																	Co	oling -	lee /	be k / None
			4 11	1618			18.1	-				N.E.					340	arriv S	Sale.	VBS) No
				Date/Ti	me: 22/09	2/2016			Relinquished by: S.Petts								Date/ Time: 22/9/2016			
Sampled by: S. Pett	ts and the			Date/11	1116. 22/0	72010				uished										Date/ Time:
Received by: Me	read to k		1	Date/Ti	me: 2	3-9-16	0		_			mpany:	NA							
Received by Lab:	nereout			Remark																

16 - 18 Hayden Court, Myaree, Western Australia 6154
PO Box 4023 Myaree BC, Western Australia 6960
Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163
email: laboratory@mpl.com.au
www.mpl.com.au
Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

SAMPLE RECEIPT ADVICE

Client Details	
Client	GHD Services Pty Ltd
Attention	A Nagle

Sample Login Details	
Your Reference	61/34772 City of Greater Geraldton
Envirolab Reference	186264
Date Sample Received	23/09/2016
Date Instructions Received	23/09/2016
Date Results Expected to be Reported	03/10/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on receipt (°C)	7
Cooling Method	Ice Pack
Sampling Date Provided	NO

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Joshua Lim	Meredith Conroy
Phone: 08 9317 2505	Phone: 08 9317 2505
Fax: 08 9317 4163	Fax: 08 9317 4163
Email: jlim@mpl.com.au	Email: mconroy@mpl.com.au

Sample and Testing Details on following page

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au
Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

Sample Id	вор	Total Dissolved Solids (grav)	Microbiological Testing	Nutrients in Water
QC02_20160922	✓	✓	✓	✓

email: lab@mpl.com.au envirolab.com.au

Envirolab Services (WA) Pty Ltd trading as MPL Laboratories | ABN 53 140 099 207

CERTIFICATE OF ANALYSIS 186264

Client:

GHD Services Pty Ltd

PO Box Y3106

Perth

WA 6000

Attention: A Nagle

Sample log in details:

Your Reference: 61/34772 City of Greater Geraldton

No. of samples: 1 Water
Date samples received: 23/09/2016
Date completed instructions received: 23/09/2016

Location:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last pages of this report for any comments relating to the results.

Report Details:

Date results requested by: 3/10/16
Date of Preliminary Report: not issued
Issue Date: 30/09/16

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

Joshua Lim Operations Manager

Jessica Miller Micro Team Leader

Client Reference: 61/34772 City of Greater Geraldton

Miscellaneous Inorganics		
Our Reference:	UNITS	186264-1
Your Reference		QC02_20160 922
Type of sample		Water
Date prepared	-	28/09/2016
Date prepared Date analysed	-	28/09/2016 28/09/2016
	- - mg/L	

MPL Reference: 186264 Revision No: R 00 Client Reference: 61/34772 City of Greater Geraldton

Microbiological Testing		
Our Reference:	UNITS	186264-1
Your Reference		QC02_20160
		922
Type of sample		Water
Date testing started	-	23/09/2016
Date testing completed	-	28/09/2016
Heterotrophic Plate Count 21C	cfu/mL	340
Heterotrophic Plate Count 35C	cfu/mL	260
Total Coliforms	cfu/100mL	<1
Thermotolerant Coliforms	cfu/100mL	<1
E.coli	cfu/100mL	<1

MPL Reference: 186264 Revision No: R 00 Client Reference: 61/34772 City of Greater Geraldton

Nutrients in Water		
Our Reference:	UNITS	186264-1
Your Reference		QC02_20160
		922
Type of sample		Water
Date prepared	-	23/09/2016
Date analysed	-	23/09/2016
Total Nitrogen	mg/L	9.2
TKN by Discrete Analyser	mg/L	9.2
NOx as N	mg/L	0.009
Nitrate as N	mg/L	<0.005
Nitrite as N	mg/L	0.006
Ammonia as N	mg/L	5.0
Total Phosphorus	mg/L	0.78

MPL Reference: 186264 Revision No: R 00

Client Reference: 61/34772 City of Greater Geraldton

Method ID	Methodology Summary
INORG-091	BOD - Analysed in accordance with APHA latest edition 5210 D.
INORG-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180±5°C
MICRO-001	Heterotrophic Plate Count: Microbial Water Analysis - in accordance with MICRO-001 (APHA-9215D-2005). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.
MICRO-001	Total Coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.5-2007). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.
MICRO-001	Thermotolerant Coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.7-2007). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.
MICRO-001	E. Coli: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.7-2007). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.
INORG-055	Total Nitrogen by colourimetric analysis based on APHA 4500-P J, 4500-NO3 F.
INORG-062	TKN by calculation fromTotal Nitrogen and NOx using APHA methodology.
INORG-055	NOx - determined colourimetrically. Soils are analysed from a water extract.
INORG-055	Nitrate - determined colourimetrically. Soils are analysed from a water extract.
INORG-055	Nitrite - determined colourimetrically. Soils are analysed from a water extract.
INORG-057	Ammonia by colourimetric analysis based on APHA latest edition 4500-NH3 F.
METALS-020	Metals in soil and water by ICP-OES.

Client Reference: 61/34772 City of Greater Geraldton QUALITYCONTROL PQL METHOD UNITS Blank Duplicate Sm# **Duplicate results** Spike Sm# Spike % Recovery Miscellaneous Base II Duplicate II % RPD Inorganics LCS-1 Date prepared 28/09/ [NT] [NT] 28/09/2016 2016 Date analysed 28/09/ [NT] [NT] LCS-1 28/09/2016 2016 BOD INORG-091 LCS-1 5 <5 [NT] [NT] 70% mg/L Total Dissolved Solids mg/L 5 INORG-018 <5 [NT] [NT] LCS-1 102% (grav) QUALITYCONTROL UNITS PQL METHOD Blank Microbiological Testing 23/09/ Date testing started 2016 **Date testing** 28/09/ completed 2016 MICRO-001 Heterotrophic Plate cfu/mL 10 <10 Count 21C Heterotrophic Plate MICRO-001 cfu/mL 10 <10 Count 35C Total Coliforms cfu/100 1 MICRO-001 <1 mL Thermotolerant cfu/100 MICRO-001 1 <1 Coliforms mLE.coli cfu/100 1 MICRO-001 <1 mL QUALITYCONTROL **UNITS** PQL METHOD Blank Duplicate Sm# **Duplicate results** Spike Sm# Spike % Recovery Nutrients in Water Base II Duplicate II %RPD LCS-1 Date prepared 23/09/ [NT] [NT] 23/09/2016 2016 Date analysed 23/09/ [NT] [NT] LCS-1 23/09/2016 2016 Total Nitrogen mg/L 0.1 INORG-055 <0.1 [NT] [NT] LCS-1 118% TKN by Discrete 0.1 INORG-062 <0.1 [NT] [NT] [NR] [NR] mg/L Analyser NOx as N mg/L 0.005 INORG-055 < 0.005 [NT] [NT] LCS-1 103% Nitrate as N mg/L 0.005 INORG-055 < 0.005 [NT] [NT] LCS-1 103% Nitrite as N mg/L 0.005 INORG-055 <0.005 [NT] [NT] LCS-1 106% Ammonia as N mg/L 0.005 INORG-057 <0.005 [NT] [NT] LCS-1 90% Total Phosphorus mg/L 0.05 METALS-< 0.05 [NT] [NT] LCS-1 100% 020

Client Reference: 61/34772 City of Greater Geraldton

Report Comments:

Definitions:

NT: Not tested NA: Test not required INS: Insufficient sample for this test PQL: Practical Quantitation Limit <: Less than >: Greater than RPD: Relative Percent Difference LCS: Laboratory Control Sample

NS: Not Specified NEPM: National Environmental Protection Measure NR: Not Reported

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011

Client Reference: 61/34772 City of Greater Geraldton

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

239 GHD House CLIENTS PEOPLE PERFORMANCE CHAIN OF CUSTORDY RECORD AND Adelaide Terrace Perth WA PO Box Y3106 Telephone 08 6222 8222 Facsimile 08 6222 Perth WA 6832 1 of 1 COC No. ANALYSIS REQUEST 6004 Page Laboratory:ALS Point Moore Groundwater Assessment Job No. Address: 10 Hod Way, Malaga 6090 Client Laboratory Contact: Lauren Biagioni City of Greater Geraldton 61/34772 Turnaround Time Container Analyses Remarks Laboratory Quote No. EP/919/16 Standard Fotal Volume (mL) Email Address (Results) Job Manager (Invoice) Andrew Nagle andrew.nagle@ghd.com steven, petts@ghd.com GHD Sample ID Laboratory Sample ID Date Time Hold 9 X $|\mathbf{x}|$ $|\mathbf{X}|$ \boxtimes X 18-10 ВР H2SO4 3 810 MW1 W X $|\mathbf{X}|$ \times X 11 $|\mathbf{x}|$ 810 w BP H2SO4 3 OC01 20160922 3 X $|\mathbf{x}|$ $|\mathbf{x}|$ X \times п 810 MW2 W BP H2SO4 3 X \times $|\mathbf{x}|$ $|\mathsf{X}|$ $|\mathbf{x}|$ 11 810 W BP H2SO4 3 MW3 IJ X \times $|\mathbf{X}|$ \times X 810 SHP8 w BP H2SO4 3 11 X 560 H2SO4 2 QC03 20160922 w ΒP 11 \boxtimes X560 QC04 20160922 W ВP H2SO4 2 Date/ Time: 18/10/2016 Date/Time: 18/10/2016 Relinquished by: S.Petts Sampled by: S. Petts

Relinquished by:

Courier/ Transport Company: NA

19-10-16 0915.

Date/Time:

Remarks:

Received by:

Received by Lab: Sample Conditions:

Environmental Division Perth
Work Order Reference
EP1609847

Date/ Time:

Telephone - 61-8-9209 7655

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EP1609847

Client : GHD PTY LTD Laboratory : Environmental Division Perth

Contact : MR ANDREW NAGLE Contact : Lauren Biagioni

Address : 999 HAY STREET Address : 10 Hod Way Malaga WA Australia 6090

PERTH WA 6000

Telephone : +61 08 6222 8222 Telephone : 08 9209 7655
Facsimile : +61 08 9429 6555 Facsimile : +61-8-9209 7600

Project : 61/34772 Point Moore Groundwater Page : 1 of 2

Assessment

 Order number
 : ====
 Quote number
 : EP2016GHDSER0029 (EP/919/16 V2)

 C-O-C number
 : ====
 QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : STEVEN PETTS

Dates

Date Samples Received : 19-Oct-2016 9:25 AM Issue Date : 19-Oct-2016
Client Requested Due : 26-Oct-2016 Scheduled Reporting Date : 26-Oct-2016

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 3.5 - Ice present

Receipt Detail : No. of samples received / analysed : 7 / 7

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples, samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of Work Order.
- pH analysis should be conducted within 6 hours of sampling.

Issue Date : 19-Oct-2016

Page

2 of 2 EP1609847 Amendment 0 Work Order

Client : GHD PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determin tasks, that are inclif no sampling default to 15:00 date is provided the laboratory for	ry for the execution may contain ad ation of moisture uded in the package. Itime is provided, on the date of sain, the sampling date		15H d Solids - High Level	30	M5 - ES/EB/FM & TC by MF	002 (22C and 36C) Colony Count (22C & 36C)	38 + NO2 + NO3 + NH3 + Total P
Matrix: WATER	0" ("	Client comple ID	WATER - EA015H Fotal Dissolved Sc	ER - EP030	1 1 1 1 1 1 1	- MW	WATER - NT-08 Total Nitrogen +
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER Total Dis	WATER BOD	WATER FC, E.co	WATER Heterotr	WATER Total Nit
EP1609847-001	[18-Oct-2016]	MW1	✓	✓	1	✓	✓
EP1609847-002	[18-Oct-2016]	QC01_20160922	✓	✓	1	✓	✓
EP1609847-003	[18-Oct-2016]	MW2	✓	✓	1	✓	✓
EP1609847-004	[18-Oct-2016]	MW3	1	✓	1	1	✓
EP1609847-005	[18-Oct-2016]	SHP8	✓	✓	✓	✓	1
EP1609847-006	[18-Oct-2016]	QC03_20160922	1	✓			✓
EP1609847-007	[18-Oct-2016]	QC04_20160922	✓	✓			✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ANDREW NAGLE

 *AU Certificate of Analysis - NATA (COA) 	Email	andrew.nagle@ghd.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	andrew.nagle@ghd.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	andrew.nagle@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	andrew.nagle@ghd.com
- A4 - AU Tax Invoice (INV)	Email	andrew.nagle@ghd.com
- Chain of Custody (CoC) (COC)	Email	andrew.nagle@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	andrew.nagle@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	andrew.nagle@ghd.com
- EDI Format - XTab (XTAB)	Email	andrew.nagle@ghd.com
STEVEN PETTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	steven.petts@ghd.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	steven.petts@ghd.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	steven.petts@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	steven.petts@ghd.com
- Chain of Custody (CoC) (COC)	Email	steven.petts@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	steven.petts@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	steven.petts@ghd.com
- EDI Format - XTab (XTAB)	Email	steven.petts@ghd.com

CERTIFICATE OF ANALYSIS

Issue Date

· 02-Nov-2016 11:53

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : EP1609847 Page : 1 of 4

Amendment : 1

Client Laboratory GHD PTY LTD : Environmental Division Perth

Contact : MR ANDREW NAGLE Contact : Lauren Biagioni

Address Address : 10 Hod Way Malaga WA Australia 6090 : 999 HAY STREET

PERTH WA 6000

Telephone : +61 08 6222 8222 Telephone : 08 9209 7655

Project : 61/34772 Point Moore Groundwater Assessment **Date Samples Received** : 19-Oct-2016 09:25

Order number Date Analysis Commenced : 19-Oct-2016 C-O-C number

Sampler : STEVEN PETTS

No. of samples received : 7 No. of samples analysed : 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: ----

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Site

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Jeremy Truong	Laboratory Manager	Perth Inorganics, Malaga, WA
Tyrone Cole	Inorganics Preparation Supervisor	Perth Inorganics, Malaga, WA
Vinitha Kesavan	Analyst	Perth Microbiology, Malaga, WA

Page : 2 of 4

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value
- CFU = colony forming unit
- MF = membrane filtration
- This report has been amended to update the sample ID's for the QC samples, as per the client's request. There are no changes to the results.
- MW007 and MW006: estimate (~) is reported where there are many non-target colonies; the typical colonies may be masked by overgrowth of non-target organisms. It may be informative to record this fact.
- MW002 is ALS's internal code and is equivalent to AS4276.3.1.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- MW007 is ALS's internal code and is equivalent to AS4276.5.

Page

3 of 4 EP1609847 Amendment 1 Work Order

: GHD PTY LTD Client

Project 61/34772 Point Moore Groundwater Assessment

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW1	QC01_20161018	MW2	MW3	SHP8
	Cli	ent sampli	ing date / time	[18-Oct-2016]	[18-Oct-2016]	[18-Oct-2016]	[18-Oct-2016]	[18-Oct-2016]
Compound	CAS Number	LOR	Unit	EP1609847-001	EP1609847-002	EP1609847-003	EP1609847-004	EP1609847-005
				Result	Result	Result	Result	Result
EA015: Total Dissolved Solids dried at	180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	13100	13100	1360	1340	2290
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	3.95	4.00	1.48	0.32	0.46
EK057G: Nitrite as N by Discrete Anal	yser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.27	<0.01	<0.01
EK058G: Nitrate as N by Discrete Ana	lyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.46	0.46	6.06	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal	vser						
Nitrite + Nitrate as N		0.01	mg/L	0.46	0.46	6.33	<0.01	<0.01
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	4.2	4.1	2.6	0.6	1.2
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alvser						
^ Total Nitrogen as N		0.1	mg/L	4.7	4.6	8.9	0.6	1.2
EK067G: Total Phosphorus as P by Di	screte Analyser							
Total Phosphorus as P		0.01	mg/L	0.47	0.46	0.18	0.08	0.28
EP030: Biochemical Oxygen Demand	(BOD)							
Biochemical Oxygen Demand		2	mg/L	33	27	3	3	57
MW002: Heterotrophic Plate Count								
Heterotrophic Plate Count (22°C)		1	CFU/mL	4200	4400	4500	14000	2000
Heterotrophic Plate Count (36°C)		1	CFU/mL	4400	3600	7400	5500	980
MW006: Faecal Coliforms & E.coli by I	MF							
Faecal Coliforms		1	CFU/100mL	~<1	~<1	~<1	~<1	~<1
Escherichia coli		1	CFU/100mL	~<1	~<1	~<1	~<1	~<1
MW007: Coliforms by MF								•
Coliforms		1	CFU/100mL	~<1	~<1	~<1	~<1	~<1

Page

: 4 of 4 : EP1609847 Amendment 1 Work Order

: GHD PTY LTD Client

Project 61/34772 Point Moore Groundwater Assessment

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	QC03_20161018	QC04_20161018	 	
	CI	ient sampli	ing date / time	[18-Oct-2016]	[18-Oct-2016]	 	
Compound	CAS Number	LOR	Unit	EP1609847-006	EP1609847-007	 	
				Result	Result	 	
EA015: Total Dissolved Solids dried at	180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	14	16	 	
EK055G: Ammonia as N by Discrete An	alyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.06	 	
EK057G: Nitrite as N by Discrete Analy	ser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analy	yser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	 	
EK061G: Total Kjeldahl Nitrogen By Dis	screte Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	 	
EK062G: Total Nitrogen as N (TKN + NC	Dx) by Discrete Ar	alyser					
^ Total Nitrogen as N		0.1	mg/L	<0.1	<0.1	 	
EK067G: Total Phosphorus as P by Dis	crete Analyser						
Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	 	
EP030: Biochemical Oxygen Demand (F	BOD)						
Biochemical Oxygen Demand		2	mg/L	<2	<2	 	
MW002: Heterotrophic Plate Count							
Heterotrophic Plate Count (22°C)		1	CFU/mL			 	
Heterotrophic Plate Count (36°C)		1	CFU/mL			 	
MW006: Faecal Coliforms & E.coli by M	F						
Faecal Coliforms		1	CFU/100mL			 	
Escherichia coli		1	CFU/100mL			 	
MW007: Coliforms by MF							
Coliforms		1	CFU/100mL			 	

QUALITY CONTROL REPORT

Work Order : **EP1609847** Page : 1 of 4

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Perth

Contact : MR ANDREW NAGLE Contact : Lauren Biagioni

Address : 999 HAY STREET Address : 10 Hod Way Malaga WA Australia 6090

PERTH WA 6000

 Telephone
 : +61 08 6222 8222
 Telephone
 : 08 9209 7655

 Project
 : 61/34772 Point Moore Groundwater Assessment
 Date Samples Received
 : 19-Oct-2016

 Order number
 : -- Date Analysis Commenced
 : 19-Oct-2016

 C-O-C number
 --- Issue Date
 · 02-Nov-2016

Sampler · STEVEN PETTS

Site : ---Quote number : ---No. of samples received : 7
No. of samples analysed : 7

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Jeremy Truong	Laboratory Manager	Perth Inorganics, Malaga, WA
Tyrone Cole	Inorganics Preparation Supervisor	Perth Inorganics, Malaga, WA
Vinitha Kesavan	Analyst	Perth Microbiology, Malaga, WA

Page : 2 of 4

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Laboratory sample ID Client sample ID EA015: Total Dissolved Solids dried at 180	Method: Compound	CAS Number	LOR					
EA015: Total Dissolved Solids dried at 180	+ F °C (OC L of: 627327)		LUK	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	15 C (QC LOL. 02/32/)							
EP1609847-001 MW1	EA015H: Total Dissolved Solids @180°C		10	mg/L	13100	12800	2.00	0% - 20%
EP1609866-001 Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	644	684	6.01	0% - 20%
EK055G: Ammonia as N by Discrete Analys	ser (QC Lot: 623447)							
EP1609847-001 MW1	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	3.95	3.93	0.520	0% - 20%
EP1609870-001 Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.03	0.00	No Limit
EK057G: Nitrite as N by Discrete Analyser	(QC Lot: 623435)							
EP1609882-001 Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.02	0.02	0.00	No Limit
EP1609888-010 Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.15	0.14	0.00	0% - 50%
EK059G: Nitrite plus Nitrate as N (NOx) by	Discrete Analyser (QC Lot: 623448)							
EP1609847-001 MW1	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.46	0.46	0.00	0% - 20%
EP1609870-001 Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.56	1.50	3.98	0% - 20%
EK061G: Total Kjeldahl Nitrogen By Discre	te Analyser (QC Lot: 628160)							
EP1608883-001 Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.2	1.2	0.00	0% - 50%
EP1609847-003 MW2	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.6	2.6	0.00	0% - 50%
EK067G: Total Phosphorus as P by Discret	e Analyser (QC Lot: 628159)							
EP1608883-001 Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.20	0.20	0.00	0% - 20%
EP1609847-003 MW2	EK067G: Total Phosphorus as P		0.01	mg/L	0.18	0.17	8.86	No Limit
EP030: Biochemical Oxygen Demand (BOD) (QC Lot: 625068)							
EP1609847-006 QC03_20161018	EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	0.00	No Limit
EP1609931-003 Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	0.00	No Limit

Page : 3 of 4

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLc	ot: 627327)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	106	83	111
				<10	1000 mg/L	109	70	130
EK055G: Ammonia as N by Discrete Analyser (QCLot: 6	23447)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	101	87	115
EK057G: Nitrite as N by Discrete Analyser (QCLot: 6234	135)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	102	86	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	alyser (QCLot: 623	3448)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	109	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(QCLot: 628160)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	87.9	82	110
EK067G: Total Phosphorus as P by Discrete Analyser (0	QCLot: 628159)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	91.4	70	130
EP030: Biochemical Oxygen Demand (BOD) (QCLot: 62	5068)							
EP030: Biochemical Oxygen Demand		2	mg/L	<2	198 mg/L	90.8	78	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ма	trix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 623447)						
EP1609847-002	QC01_20161018	EK055G: Ammonia as N	7664-41-7	1 mg/L	85.1	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 623435)						
EP1609847-001	MW1	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	88.0	70	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 623	3448)					
EP1609847-002	QC01_20161018	EK059G: Nitrite + Nitrate as N		0.5 mg/L	105	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 628160)						
EP1608883-005	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.2	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 628159)						
EP1608883-005	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	85.2	70	130

Page : 4 of 4

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EP1609847** Page : 1 of 6

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Perth

Contact : MR ANDREW NAGLE : 08 9209 7655
Project : 61/34772 Point Moore Groundwater Assessment Date Samples Received : 19-Oct-2016

Site :---- Issue Date :02-Nov-2016

Sampler : STEVEN PETTS No. of samples received : 7
Order number : ---- No. of samples analysed : 7

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

WALLK					_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		breach, with	
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180	5 °C							
Clear Plastic Bottle - Natural (EA015H)								
MW1,	QC01_20161018,	18-Oct-2016				24-Oct-2016	25-Oct-2016	✓
MW2,	MW3,							
SHP8,	QC03_20161018,							
QC04_20161018								
EK055G: Ammonia as N by Discrete Analyse	er							
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1,	QC01_20161018,	18-Oct-2016				19-Oct-2016	15-Nov-2016	✓
MW2,	MW3,							
SHP8,	QC03_20161018,							
QC04_20161018								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
MW1,	QC01_20161018,	18-Oct-2016				19-Oct-2016	20-Oct-2016	✓
MW2,	MW3,							
SHP8,	QC03_20161018,							
QC04_20161018								
EK059G: Nitrite plus Nitrate as N (NOx) by	Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)							45.11 0040	
MW1,	QC01_20161018,	18-Oct-2016				19-Oct-2016	15-Nov-2016	✓
MW2,	MW3,							
SHP8,	QC03_20161018,							
QC04_20161018								
EK061G: Total Kjeldahl Nitrogen By Discret	e Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)				45.11 0040			45.11 0040	
MW1,	QC01_20161018,	18-Oct-2016	26-Oct-2016	15-Nov-2016	✓	26-Oct-2016	15-Nov-2016	✓
MW2,	MW3,							
SHP8,	QC03_20161018,							
QC04_20161018								

Page : 3 of 6

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Matrix: WATER					Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) MW1, MW2, SHP8, QC04_20161018	QC01_20161018, MW3, QC03_20161018,	18-Oct-2016	26-Oct-2016	15-Nov-2016	✓	26-Oct-2016	15-Nov-2016	✓
EP030: Biochemical Oxygen Demand (BOD)								
Clear Plastic Bottle - Natural (EP030) MW1, MW2, SHP8, QC04_20161018	QC01_20161018, MW3, QC03_20161018,	18-Oct-2016				20-Oct-2016	20-Oct-2016	✓
MW002: Heterotrophic Plate Count								
Sterile Plastic Bottle - Sodium Thiosulfate (MW002) MW1, MW2, SHP8	QC01_20161018, MW3,	18-Oct-2016				19-Oct-2016	19-Oct-2016	✓
MW006: Faecal Coliforms & E.coli by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW006) MW1, MW2, SHP8	QC01_20161018, MW3,	18-Oct-2016				19-Oct-2016	19-Oct-2016	✓
MW007: Coliforms by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW007) MW1, MW2, SHP8	QC01_20161018, MW3,	18-Oct-2016				19-Oct-2016	19-Oct-2016	✓

Page : 4 of 6

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Total Phosphorus as P By Discrete Analyser

Project : 61/34772 Point Moore Groundwater Assessment

NEPM 2013 B3 & ALS QC Standard

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

1

EK067G

20

5.00

5.00

Quality Control Sample Type	Count Rate (%)			Quality Control Specification			
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
itrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
mmonia as N by Discrete analyser	EK055G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
iochemical Oxygen Demand (BOD)	EP030	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
itrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
lethod Blanks (MB)							
mmonia as N by Discrete analyser	EK055G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
iochemical Oxygen Demand (BOD)	EP030	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
atrix Spikes (MS)							
mmonia as N by Discrete analyser	EK055G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.69	5.00	√	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
							1

Page : 5 of 6

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Biochemical Oxygen Demand (BOD)	EP030	WATER	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (2013) Schedule B(3)
Heterotrophic (Total) Plate Count @ 22C and 36C	MW002	WATER	In house: Referenced to AS4276.3.1- 2007
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	In house: Referenced to AS 4276.7 2007
Coliforms by Membrane Filtration	MW007	WATER	In house: Referenced to AS 4276.5 - 2007
Preparation Methods	Method	Matrix	Method Descriptions

Page : 6 of 6

Work Order : EP1609847 Amendment 1

Client : GHD PTY LTD

Project : 61/34772 Point Moore Groundwater Assessment

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013)
			Schedule B(3)

Will3, Total Phosphorus Biochemical Oxygen Demand TDS - Standard Level TOtal (Heterotrophic Plate Count at 210C and 35oC (TPC) YEA Total +Faecal Coliforms & E. Coli (MF) Hold
With, Total Phosphorus Biochemical Oxygen Demand TDS - Standard Level Total (Heterotrophic Plate Count at 21oC and 35oC (TPC) YEA Total +Faecal Coliforms & E. Coli (MF) Hold
Biochemical Oxygen Demand TDS - Standard Level Total (Heterotrophic Plate Count at 21oC and 35oC (TPC) YEA Total +Faecal Coliforms & E. Coli (MF) Hold
NH3, Total Phosphorus Biochemical Oxygen Deman TDS - Standard Level Total (Heterotrophic Plate C 21oC and 35oC (TPC) YEA Total +Faecal Coliforms & E. Hold
NH3, Total Phosphorus Biochemical Oxygen Deman TDS - Standard Level Total (Heterotrophic Plate C 21oC and 35oC (TPC) YEA Total +Faecal Coliforms & E. Hold
elinquished by: S.Petts Date/ Time: 18/10/2
elinquished by: Durier/ Transport Company: NA Laboratories
26

Date Rec - 19 - (©)
Time Rec - 930
Rec By - MC
TAT Reg - SAME 1/2/3 STD
Temp (cool) ambient

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au
Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

SAMPLE RECEIPT ADVICE

Client Details	
Client	GHD Services Pty Ltd
Attention	Andrew Nagle

Sample Login Details	
Your Reference	61/34772
Envirolab Reference	187366
Date Sample Received	19/10/2016
Date Instructions Received	19/10/2016
Date Results Expected to be Reported	26/10/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on receipt (°C)	15
Cooling Method	Ice Pack
Sampling Date Provided	Yes

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Joshua Lim	Meredith Conroy
Phone: 08 9317 2505	Phone: 08 9317 2505
Fax: 08 9317 4163	Fax: 08 9317 4163
Email: jlim@mpl.com.au	Email: mconroy@mpl.com.au

Sample and Testing Details on following page

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au
Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

Sample Id	вор	Total Dissolved Solids (grav)	Nutrients in Water	Microbiological Testing
QC02_20160922	✓	✓	✓	✓

email: lab@mpl.com.au envirolab.com.au

Envirolab Services (WA) Pty Ltd trading as MPL Laboratories | ABN 53 140 099 207

CERTIFICATE OF ANALYSIS 187366

Client:

GHD Services Pty Ltd

PO Box Y3106

Perth

WA 6000

Attention: Andrew Nagle

Sample log in details:

Your Reference:

No. of samples:

Date samples received:

Date completed instructions received:

19/10/2016

19/10/2016

Location:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last pages of this report for any comments relating to the results.

Report Details:

Date results requested by: 26/10/16

Date of Preliminary Report: Not issued Issue Date: 26/10/16

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

Joshua Lim Operations Manager

MPL Reference: 187366 Revision No: R 00 Jessica Miller Micro Team Leader

Miscellaneous Inorganics		
Our Reference:	UNITS	187366-1
Your Reference		QC02_20160
		922
Date Sampled		18/10/2016
Type of sample		Water
Date prepared	-	19/10/2016
Date analysed	_	19/10/2016
= =====================================		
BOD	mg/L	14

Nutrients in Water		
Our Reference:	UNITS	187366-1
Your Reference		QC02_20160
		922
Date Sampled		18/10/2016
Type of sample		Water
Date prepared	-	19/10/2016
Date analysed	-	19/10/2016
Total Nitrogen	mg/L	5.7
TKN by Discrete Analyser	mg/L	5.3
NOx as N	mg/L	0.44
Nitrite as N	mg/L	<0.005
Nitrate as N	mg/L	0.44
Ammonia as N	mg/L	3.2
Total Phosphorus	mg/L	0.57

Microbiological Testing		
Our Reference:	UNITS	187366-1
Your Reference		QC02_20160
		922
Date Sampled		18/10/2016
Type of sample		Water
Date testing started	-	19/10/2016
Date testing completed	-	24/10/2016
Heterotrophic Plate Count 21C	cfu/mL	4,200^
Heterotrophic Plate Count 35C	cfu/mL	3,900^
Total Coliforms	cfu/100mL	3**
Thermotolerant Coliforms	cfu/100mL	<1**
E.coli	cfu/100mL	<1**

MethodID	Methodology Summary						
INORG-091	BOD - Analysed in accordance with APHA latest edition 5210 D.						
INORG-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180±5°C						
INORG-055	Total Nitrogen by colourimetric analysis based on APHA 4500-P J, 4500-NO3 F.						
INORG-062	TKN by calculation from Total Nitrogen and NOx using APHA methodology.						
INORG-055	NOx - determined colourimetrically. Soils are analysed from a water extract.						
INORG-055	Nitrite - determined colourimetrically. Soils are analysed from a water extract.						
INORG-055	Nitrate - determined colourimetrically. Soils are analysed from a water extract.						
INORG-057	Ammonia by colourimetric analysis based on APHA latest edition 4500-NH3 F.						
METALS-020	Metals in soil and water by ICP-OES.						
MICRO-001	Heterotrophic Plate Count: Microbial Water Analysis - in accordance with MICRO-001 (APHA-9215D-2005). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.						
MICRO-001	Total Coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.5-2007). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.						
MICRO-001	Thermotolerant Coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.7-2007). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.						
MICRO-001	E. Coli: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.7-2007). Recommended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.						

		C	lient Refere	nce:	61/34772			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Miscellaneous Inorganics						Base II Duplicate II %RPD		Recovery
Date prepared	-			19/10/ 2016	[NT]	[NT]	LCS-1	19/10/2016
Date analysed	-			19/10/ 2016	[NT]	[NT]	LCS-1	19/10/2016
BOD	mg/L	5	INORG-091	<5	[NT]	[NT]	LCS-1	71%
Total Dissolved Solids (grav)	mg/L	5	INORG-018	<5	[NT]	[NT]	LCS-1	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Nutrients in Water						Base II Duplicate II %RPD		Recovery
Date prepared	-			19/10/ 2016	[NT]	[NT]	LCS-1	19/10/2016
Date analysed	-			20/10/ 2016	[NT]	[NT]	LCS-1	19/10/2016
Total Nitrogen	mg/L	0.1	INORG-055	<0.1	[NT]	[NT]	LCS-1	103%
TKN by Discrete Analyser	mg/L	0.1	INORG-062	<0.1	[NT]	[NT]	[NR]	[NR]
NOx as N	mg/L	0.005	INORG-055	<0.005	[NT]	[NT]	LCS-1	110%
Nitrite as N	mg/L	0.005	INORG-055	<0.005	[NT]	[NT]	LCS-1	107%
Nitrate as N	mg/L	0.005	INORG-055	<0.005	[NT]	[NT]	LCS-1	110%
Ammonia as N	mg/L	0.005	INORG-057	<0.005	[NT]	[NT]	LCS-1	108%
Total Phosphorus	mg/L	0.05	METALS- 020	<0.05	[NT]	[NT]	LCS-1	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank		•	•	"
Microbiological Testing								
Date testing started	-			19/10/ 2016				
Date testing completed	-			24/10/ 2016				
Heterotrophic Plate Count 21C	cfu/mL	10	MICRO-001	<10				
Heterotrophic Plate	cfu/mL	10	MICRO-001	<10				

MPL Reference: 187366 Revision No: R 00

cfu/100

mL

cfu/100

mL

cfu/100

mL

1

1

1

MICRO-001

MICRO-001

MICRO-001

<1

<1

<1

Count 35C Total Coliforms

Thermotolerant

Coliforms

E.coli

Report Comments:

- ^ Heterotrophic plate count is an estimate.
- ** High background growth of non-coliform bacteria may underestimate Total Coliform Count.
- ** High background growth of non-coliform bacteria may underestimate the Thermotolerant Coliform and E.coli Count.

Definitions:

NT: Not tested NA: Test not required INS: Insufficient sample for this test PQL: Practical Quantitation Limit <: Less than >: Greater than RPD: Relative Percent Difference LCS: Laboratory Control Sample NS: Not Specified NEPM: National Environmental Protection Measure NR: Not Reported

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Appendix G – Tabulated Groundwater Analytical Results

Appendix G, Table G1 Groundwater Analytical Results

						6134772 MW1	6134772 MW1	6134772 MW1	6134772 MW2	6134772 MW2	6134772 MW2	6134772 MW3	6134772 MW3
				ality Guidelines		24/08/2016	23/09/2016	18/10/2016	24/08/2016	23/09/2016	18/10/2016	24/08/2016	23/09/2016
		ANZECC 2000	ANZECC 2000	ANZECC 2000	ANZECC 2000								
Parameter	Unit	MW 95%	Marine Inshore	Primary Contact	Secondary Contact								
				Recreation	Recreation								
Ammonia as N	mg/L	0.91	-	-	-	2.68	6.28	3.95	0.53	0.13	1.48	0.57	0.78
BOD	mg/L	-	-	-	-	6	31	33	7	4	3	4	5
Coliform	cfu/100 ml	-	-	-	-	250,000	<1	1	1000	10	1	3000	10
Plate Count (36°C)	CFU/mL	-	-	-	-	46,000	170	4400	11,000	12,000	7400	68,000	2100
Plate Count (22°C)	CFU/mL	-	-	-	-	49,000	72	4200	13,000	1700	4500	70,000	2400
Nitrate (as N)	mg/L	-	0.05	-	-	0.19	0.05	0.46	13.8	9.95	6.06	0.02	0.01
Nitrite + Nitrate as N	mg/L	-	-	-	-	0.19	0.05	0.46	14	11.8	6.33	0.02	0.01
Nitrite (as N)	mg/L	-	-	-	-	<0.01	<0.01	<0.01	0.2	1.85	0.27	<0.01	<0.01
Faecal Coliform	CFU/100mL	-	-	150	1000	200	<1	1	400	1	1	400	1
E. Coli	CFU/100 ml	-	-	150	1000	200	<1	1	400	1	1	400	1
Total Dissolved Solids	mg/L	-	-			8890	-	-	1480	-	-	1090	-
Total Dissolved Solids (Filtered)	mg/L	-	-	-	-	-	22,300	13,100	-	2120	1360	-	1320
Total Kjeldahl Nitrogen (as N)	mg/L	-	-	-	-	3	6.7	4.2	3.1	2	2.6	0.7	0.9
Nitrogen (Total)	mg/L	-	0.23	-	-	3.2	6.8	4.7	17.1	13.8	8.9	0.7	0.9
Phosphorus (Total)	mg/L	-	0.005	-	-	0.29	0.81	0.47	0.21	0.14	0.18	0.06	0.08

Legend

Lebena	
ANZECC 2000 MW 95%	Indicates a level is equal to or above the ANZECC (2000) Marine Waters 95% Species Protection Trigger Value
ANZECC 2000 Marine Inshore	Indicates a level is equal to or above the ANZECC (2000) Marine Inshore Trigger Value
ANZECC 2000 Pimary Contact Recreation	Indicates a level is equal to or above the ANZECC (2000) Water Quality Guideline for Primary Contact Recreation (e.g. swimming)
ANZECC 2000 Secondary Contact Recreation	Indicates a level is equal to or above the ANZECC (2000) Water Quality Guideline for Secondary Contact Recreation (e.g. boating, fishing)

Appendix G, Table G1 Groundwater Analytical Results

						6134772 MW3	6134772 SHP8	6134772 SHP8	6134772 SHP8					
	Water Quality Guidelines			18/10/2016	24/08/2016	23/09/2016	18/10/2016	Statistical Summary						
		ANZECC 2000	ANZECC 2000	ANZECC 2000	ANZECC 2000					Number of	Minimum	Maximum	Mean	Median
Parameter	Unit	MW 95%	Marine Inshore	Primary Contact	Secondary Contact					Results				
				Recreation	Recreation									
Ammonia as N	mg/L	0.91	-	-	-	0.32	0.36	2.54	0.46	12	0.13	6.28	1.7	0.675
BOD	mg/L	-	-	-	-	3	4	22	57	12	3	57	15	5.5
Coliform	cfu/100 ml	-	-	-	-	1	200	<1	1	12	<1	250,000	21,185	5.5
Plate Count (36°C)	CFU/mL	-	-	-	-	5500	110	17	980	12	17	68,000	13,140	4,950
Plate Count (22°C)	CFU/mL	-	-	-	-	14,000	910	12	2000	12	12	70,000	13,483	3,300
Nitrate (as N)	mg/L	-	0.05	-	-	<0.01	0.02	0.03	<0.01	12	<0.01	13.8	2.6	0.04
Nitrite + Nitrate as N	mg/L	-	-	-	-	<0.01	0.02	0.03	<0.01	12	<0.01	14	2.7	0.04
Nitrite (as N)	mg/L	-	-	-	-	<0.01	<0.01	<0.01	<0.01	12	<0.01	1.85	0.2	0.005
Faecal Coliform	CFU/100mL	-	-	150	1000	1	100	<1	1	12	<1	400	92	1
E. Coli	CFU/100 ml	-	-	150	1000	1	100	<1	1	12	<1	400	92	1
Total Dissolved Solids	mg/L	-	-			-	3320	-	-	4	1,090	8,890	3,695	2,400
Total Dissolved Solids (Filtered)	mg/L	-	-	-	-	1340	-	10,300	2290	8	1,320	22,300	6,766	2,205
Total Kjeldahl Nitrogen (as N)	mg/L	-	-	-	-	0.6	1.5	3.3	1.2	12	0.6	6.7	2.5	2.3
Nitrogen (Total)	mg/L	-	0.23	-	-	0.6	1.5	3.3	1.2	12	0.6	17.1	5.2	3.25
Phosphorus (Total)	mg/L	-	0.005	-	-	0.08	0.31	0.38	0.28	12	0.06	0.81	0.27	0.245

Legend

Legenu	
ANZECC 2000 MW 95%	Indicates a level is equal to or above the ANZECC (2000) Marine Waters 95% Species Protection Trigger Value
ANZECC 2000 Marine Inshore	Indicates a level is equal to or above the ANZECC (2000) Marine Inshore Trigger Value
ANZECC 2000 Pimary Contact Recreation	Indicates a level is equal to or above the ANZECC (2000) Water Quality Guideline for Primary Contact Recreation (e.g. swimming)
ANZECC 2000 Secondary Contact Recreation	Indicates a level is equal to or above the ANZECC (2000) Water Quality Guideline for Secondary Contact Recreation (e.g. boating, fishing)

		Rinsate	Field Blank	Rinsate
		QC03_20160824	QC04_20160824	QC03_20160922
ChemName	output	24/08/2016	24/08/2016	23/09/2016
	unit			
Ammonia as N	mg/L	<0.01	<0.01	<0.01
BOD	mg/L	5	<2	<2
Coliform	cfu/100 ml	-	-	-
Plate Count (36°C)	cfu/100 ml	-	-	-
PLATE COUNT 22C	cfu/100 ml	-	-	-
Nitrate (as N)	mg/L	<0.01	<0.01	<0.01
Nitrite + Nitrate as N	mg/L	<0.01	<0.01	<0.01
Nitrite (as N)	mg/L	<0.01	<0.01	<0.01
Faecal Coliform	cfu/100 ml	-	-	-
E. Coli	cfu/100 ml	-	-	-
Total Dissolved Solids	mg/L	<10	<10	-
Total Dissolved Solids (Filtered)	mg/L	-	-	20
Total Kjeldahl Nitrogen	mg/L	<0.1	<0.1	<0.1
Nitrogen (Total)	mg/L	<0.1	<0.1	<0.1
Phosphorus	mg/L	<0.01	<0.01	<0.01

Field Blank	Rinsate	Field Blank
QC04_20160922	QC03_20160922	QC04_20160922
23/09/2016	18/10/2016	18/10/2016
< 0.01	0.06	0.06
<2	<2	<2
-	-	-
-	-	-
-	-	-
< 0.01	<0.01	0.01
<0.01	<0.01	0.01
< 0.01	<0.01	<0.01
-	-	-
-	-	-
-	-	-
<10	14	16
<0.1	<0.1	<0.1
<0.1	<0.1	<0.1
<0.01	<0.01	<0.01

Appendix G Table G3 Blind and Split RPDs

		Well	MW1	QC01_20160824	QC02_20160824	RPD	RPD	MW1	QC01_20160922	QC02_20160922	RPD	RPD	MW1	QC01_20161018	8 QC02_2016101	8 RPD	RPD
		Date	24/08/2016	24/08/2016	24/08/2016	MW1	MW1	23/09/2016	23/09/2016	23/09/2016	MW1 and	MW1 and	18/10/2016	18/10/2016	18/10/2016	MW1 and	MW1 and
						QC01	QC02				QC01	QC02				QC01	QC02
ChemName	output unit	EQL															
Ammonia as N	mg/L	0.01	2.68	2.86	2.9	6	1	6.28	6.42	5	2	-23	3.95	4	3.2	1	-21
BOD	mg/L	2	6	6	<5	0	-18	31	31	<5	0	-144	33	27	14	-20	-81
Coliform	cfu/100 ml	1	250,000	200	-	200	-	<1	<1	<1	-	-	1	1	<1	0	0
Plate Count (36°C)	CFU/mL	1	46,000	49,000	-	6	-	170	140	340	-19	67	4400	4400	4200	0	-5
PLATE COUNT 22C	CFU/mL	1	49,000	60,000	-	20	-	72	73	260	1	113	4200	3600	3900	-15	-7
Nitrate (as N)	mg/L	0.01	0.19	0.18	0.17	-5	-6	0.05	<0.01	< 0.005	-133	-164	0.46	0.46	0.44	0	-4
Nitrite + Nitrate as N	mg/L	0.01	0.19	0.18	0.17	-5	-6	0.05	0.46	-	161	-	0.46	0.46	-	0	-
Nitrite (as N)	mg/L	0.01	< 0.01	<0.01	<0.2	-	-	<0.01	<0.01	0.006	-	-198	<0.01	< 0.01	< 0.005	-	-
aecal Coliform	CFU/100mL	1	200	1100	-	138	-	<1	<1	<1	0	0	1	1	<1	0	0
. Coli	cfu/100 ml	1	200	1100	-	138	-	<1	<1	<1	0	0	1	1	<1	0	0
Total Dissolved Solids	mg/L	10	8890	8800	7500	-1	-16	22,300	22,400	22000	0	-1	13,100	13,100	14000	0	7
Total Kjeldahl Nitrogen	mg/L	0.1	3	2.9	3.1	-3	7	6.7	6.7	9.2	0	31	4.2	4.1	5.3	-2	23
Nitrogen (Total)	mg/L	0.1	3.2	3.1	3.2	-3	3	6.8	6.7	9.2	-1	30	4.7	4.6	5.7	-2	19
Phosphorus	mg/L	0.01	0.29	0.3	0.19	3	-45	0.81	0.9	0.78	11	-4	0.47	0.46	0.57	-2	19

Indicates Exceedance of RPD criteria (50%)

Appendix H – Calibration Certificates

RENTALS

Insitu Aqua Troll 600 Profiler Water Quality Meter

This Water Quality Met	ter has been perfo	rmance checke	d / calibrate	ed* as follo	ws:		7
рН	□ pH 6.8	8 🗹 p	H 7.00	☑ pH 4.	00	□ pH 10.00	₽pH
Conductivity	♂0.0mS/	/cm	413uS/cm	☑12.88r	nS/cm	□ 58.6mS/cm	
TDS	☑ 0.0 ppl	< ≥3	36 ppk	P	ppk		
Dissolved Oxygen	∠ 0.00pp	m in Sodium S	ulphite			100% Satura	ation in Air
Redox (ORP)**	Electro	de operability t	est 240mV	+/- 10%.	Actual:	240 mV	
Electrodes cleaned/o	checked	et	emperature				
* Calibration solution traceab	oility information is avai	lable upon request	ş				
Date: 22/8		Checke	ed by: <i>f</i>	town			
Signed:							
return. A minimum \$20 Items not returned will Sent Received	be billed for at the Returned	full replacement	nt cost.				
		Aqua I roll 600 AquaTroll 600			attery Vo	oltage @	
		Aqua Troll 600		. 165/110			
		Troll Cable S/n		Leng	th:	m	
		USB Cable Co			S/n:		
		S/steel Sensor Screw Drivers :		hroud			
		Turbidity Wiper					
		PC Software ve	ersion X.X				
		Aqua Troll 600	Cary Case				
Processors Signature/ Init	tials	AP					
Quote Reference	CP0818	Condition	on on return			· ·	
Customer Ref							
Equipment ID	AT600						
Equipment serial no.							
Return Date	/ /						
Return Time							

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Spar	n 1	Span 2	2	Traceability Lot #	Pass?
рН	pH 7.00 / pH 4.00	7	рН	4	рН	Lucia	\(\overline{\pi}\)
Conductivity	1413uS/cm	1413	mS/cm	12880	mS/cm		ď,
TDS	36 ppk	0	ppk	36	ppk		ď
Dissolved Oxygen	Sodium Sulphite / Air	in Sodium	ppm	(O Saturatio	ppm on in Air		
Check only Redox	Electrode	240r	nV I				
(ORP) *	operability test	+/- 1		240	mV	· ·	₩.
mV reading. Battery Status	sety Tag attached (A	_(min 7.2V)		Temp	erature _	ogen Electrode), add 199 Z \°C aned and checked	
Tag No	i						
Valid to	:						
Date: 20/1							
AO							
Please check tha	at the following item	ns are receive	ed and that a	all items are c	eleaned a	nd decontaminated be	fore return
minimum \$30 cle billed for at the fu Sent Ro	eaning / service / re ull replacement cos eturned Item 90FLM pH sen Condu Dissolv Redox Power Instruc Quick (Syringe	Pair charge not. V Unit. Ops consor with wettictivity/TDS/Teled oxygen Ysto (ORP) senso supply 240Votion Manual Guide with storage Case	check/Battering cap, 5m emperature ISI5739 sens r with wettin to 12V DC 2	y status: K=10 sensor, sor with wetting cap, 5m	5m ng cap, 5	damaged items. Items	fore return
Please check that minimum \$30 cle billed for at the full services of the servi	eaning / service / reull replacement cosull replace	Pair charge not. V Unit. Ops consor with wettictivity/TDS/Teled oxygen Ysto (ORP) senso supply 240Votion Manual Guide with storage Case	check/Battering cap, 5m emperature ISI5739 sens r with wettin to 12V DC 2	y status: K=10 sensor, sor with wetting g cap, 5m 200mA r pH and ORF	5m ng cap, 5	damaged items. Items	fore return not returne
Please check that minimum \$30 cle billed for at the full sent sent sent sent sent sent sent sent	eaning / service / reull replacement cosull replace	Pair charge not. V Unit. Ops consor with wettictivity/TDS/Teled oxygen Ysto (ORP) senso supply 240Votion Manual Guide with storage Case	check/Battering cap, 5m emperature ISI5739 sens r with wettin to 12V DC 2	y status: K=10 sensor, sor with wetting g cap, 5m 200mA r pH and ORF	5m ng cap, 5	damaged items. Items	fore return not returne
Please check that minimum \$30 cle billed for at the full services of the servi	eaning / service / reull replacement coseull r	Pair charge not. V Unit. Ops consor with wettictivity/TDS/Teled oxygen Ysto (ORP) senso supply 240Votion Manual Guide with storage Case	check/Battering cap, 5m emperature ISI5739 sensity to 12V DC 2 e solution for ectrical safet	y status: K=10 sensor, sor with wetting cap, 5m 200mA r pH and ORF ty (tag must b	5m ng cap, 5	damaged items. Items	fore return
Please check that minimum \$30 cle billed for at the full services of the servi	eaning / service / reull replacement coseull r	v Unit. Ops of sor with wettictivity/TDS/Teled oxygen Ys (ORP) sensor supply 240V tion Manual Guide with storage to confirm electors	check/Battering cap, 5m emperature ISI5739 sensity to 12V DC 2 e solution for ectrical safet	y status: K=10 sensor, sor with wetting g cap, 5m 200mA r pH and ORF ty (tag must b	5m ng cap, 5 e sensors	damaged items. Items	fore return
Please check that minimum \$30 cle billed for at the full series of the	eaning / service / reull replacement coseull r	v Unit. Ops of sor with wetting the continuation of the continuati	check/Battering cap, 5m emperature I SI5739 sens r with wetting to 12V DC 2 e solution for ectrical safet Return	y status: K=10 sensor, sor with wetting cap, 5m 200mA r pH and ORF ty (tag must b	5m ng cap, 5 P sensors re valid)	damaged items. Items	fore return

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 1300 735 295

Fax: (Free Call) 1800 675 123

Email: RentalsAU@Thermofisher.com

Adelaide Branch
5 Caribbean Drive,
Scoresby 3179

Adelaide Branch
Level 1, 4 Talavara Road,
North Ryde 2113

Adelaide Branch
2 Adelaide Branch
1 Unit 2/5 Ross St
Newstead 4006

Newstead 4006

Perth Branch
1/21 Beringarra Ave
Malaga WA 6090

RENTALS

Equipment Certification Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentr	ation	Span	1	Spa	n 2	Traceability Lot #	Pass?
рН	pH 4.00/ pl	H 7.00	4	рН	7	рН	1	
Conductivity	12.88	mS/cm	17.88	mS/cm	1413	MS/cm		Ó
TDS		6.0ppk	0	ppk	36	ppk		
Dissolved Oxygen	Sodium Su / Air	ılphite	in Sodium S	ppm Sulphite	\⁄⊃ Satura	ppm tion in Air		<u>d</u>
Turbidity	1000	NTU	0	NTU	(OR	NTU		Z
Redox (ORP)**240mV			Electrode	e operabil	ity test 240	mV +/- 10%	6. Actual: 240 mV	
Battery Statu Electrical Sa	us afety Tag a o:	attached	(min 7.2' (AS/NZS 37	V) 760)			e°C leaned and checked	
	o:							
Date: 14/10								
		owing it	ome are rece		d that all ite	ome are c	eaned and decontan	ninated he
seturn. A minim tems not return	nat the foll num \$30 c ned will be eturned	leaning billed for ltem 90FLMV pH sens Conductor Dissolve Turbidity Power's Instructi Quick G Syringe Carry Control of the sens control of the sen	/ service / re or at the full r / Unit. Ops of for with wetti tivity/TDS/Te ed oxygen Y / sensor, 5m supply 240V on Manual uide with storage	check/Ba check/Ba ing cap, emperatu SI5739 s to 12V D	rge may be nent cost. ttery status 5m ure K=10 s sensor with 0C 200mA	e applied to see appl	ap, 5m ensors	
Please check the return. A minimatems not return. Sent Re	nat the foll num \$30 c ned will be eturned	leaning billed for ltem 90FLMV pH sens Conductor Dissolve Turbidity Power's Instructi Quick G Syringe Carry Control of the sens control of the sen	/ service / re or at the full r / Unit. Ops of for with wetti tivity/TDS/Te ed oxygen Y y sensor, 5m supply 240V on Manual fuide with storage ase	check/Ba check/Ba ing cap, emperatu SI5739 s to 12V D	rge may be nent cost. ttery status 5m ure K=10 s sensor with 0C 200mA	e applied to see appl	to any unclean or dai	
Please check the teturn. A minim tems not return Sent Re	nat the foll num \$30 c ned will be eturned	leaning billed for ltem 90FLMV pH sens Conductor Dissolve Turbidity Power's Instructi Quick G Syringe Carry Control of the sens control of the sen	/ service / re or at the full r / Unit. Ops of for with wetti tivity/TDS/Te ed oxygen Y y sensor, 5m supply 240V on Manual fuide with storage ase	check/Ba check/Ba ing cap, emperatu SI5739 s to 12V D	rge may be nent cost. ttery status 5m ure K=10 s sensor with 0C 200mA	e applied to see appl	to any unclean or dai	
Please check the teturn. A minim tems not return Sent Re	nat the foll num \$30 c ned will be eturned	leaning billed for bil	/ service / re or at the full r / Unit. Ops of for with wetti tivity/TDS/Te ed oxygen Y y sensor, 5m supply 240V on Manual fuide with storage ase	check/Ba check/Ba ing cap, emperatu SI5739 s to 12V D e solution ectrical s	rge may be nent cost. ttery status 5m ure K=10 s sensor with 0C 200mA	e applied to see appl	to any unclean or dai	
Please check the turn. A minim tems not return. Sent Re Date: 4/10 Signed: A	nat the following \$30 coned will be eturned	leaning billed for bil	/ service / representation / Unit. Opsicor with wettitivity/TDS/Ted oxygen Yellon Manual wide with storage ase oconfirm electric for the storage as the stor	check/Ba check/Ba ing cap, emperate SI5739 s to 12V D e solution ectrical s	rge may be nent cost. Ittery status 5m Ire K=10 sensor with 0C 200mA In for pH an afety (tag i	e applied to see appl	o any unclean or dar	
Please check the turn. A minim tems not return Sent Re Date: 4/10 TFS Ref Customer Ref	nat the following \$30 coned will be sturned	leaning billed for bil	/ Service / repract the full repract the full repract the full repract of the full repract of the full representation of the full	check/Ba ing cap, emperate SI5739 s to 12V D e solution ectrical s Retur	rge may be nent cost. Ittery status 5m Ire K=10 sensor with 0C 200mA In for pH an afety (tag i	e applied to see appl	o any unclean or dar	

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 1300 735 295 Fax: (Free Call) 1800 675 123 Email: Rentals AU @ Thermofisher.com

Melbourne Branch 5 Caribbean Drive,
5 Caribbean Drive,
5 Caribbean Drive,
8 Coreaby 31799 Branch Level 1, 4 Talawara Road,
North Ryde 2113 South Australia 5667

We do more than give you great equipment... We give you great solutions!"

Email: Rentals AU @ Thermofisher.com

Perth Branch
121 Berngarra Ave
121 Berngarra Ave
Scoreaby 31799

Mewstead 4006

Malaga WA 6090

Issue 8 Aug 15 G0564

Appendix I – Field Works Photographs

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2217		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW1 – Soil Log 0.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2218		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 1.0 mbgl]	

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2219		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 1.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2220		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 2.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2221		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 2.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2222		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW1 – Soil Log 3.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2223		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 3.5 mbgl		

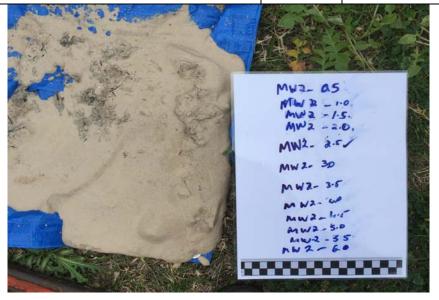
Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2224		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW1 – Soil Log 4.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2225		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 4.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2226		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW1 – Soil Log 5.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2227		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 5.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2229		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW2 – Soil Log 0.5 mbgl		


Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2230		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 1 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2231		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 1.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2232		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 2.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2233		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW1 – Soil Log 2.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2234		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 3.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2235		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW2 – Soil Log 3.5 mbgl		


Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2236		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 4.0 mbgl		

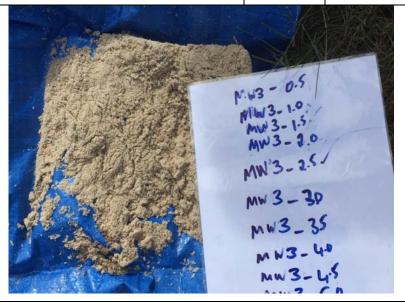
Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2237		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 4.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2238		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 5.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2239		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 5.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2240		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW2 – Soil Log 6.0 mbgl		

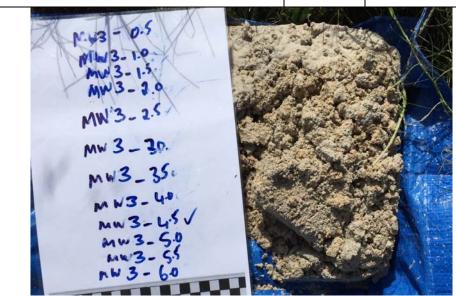
Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2241		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW3 – Soil Log 0.5 mbgl		


Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2242		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW3 – Soil Log 1.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2243		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW3 – Soil Log 1.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2244		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW3 – Soil Log 2.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2245		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW3 – Soil Log 2.5 mbgl		


Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2246		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW3 – Soil Log 3.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2247		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW3 – Soil Log 3.5 mbgl		

Created by: S Petts	Date	Point Moore Groundwater
Source: GHD (15/08/2016)	16/09/2016	Assessment
Reference: IMG_2248		
File:G:\61\34772\Technical\Photos\	2016	GHD
Description: MW3 – Soil Log 4.0 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2249		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW3 – Soil Log 4.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment	
Reference: IMG_2250			
File:G:\61\34772\Technical\Photos\	2016	GHD	
Description: MW3 – Soil Log 5.0 mbgl			

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater
Reference: IMG_2251 File:G:\61\34772\Technical\Photos\	2016	Assessment
Description: MW3 – Soil Log 5.5 mbgl		

Created by: S Petts Source: GHD (15/08/2016)	Date 16/09/2016	Point Moore Groundwater Assessment
Reference: IMG_2252		
File:G:\61\34772\Technical\Photos\	2016	(GHD)
Description: MW3 – Soil Log 6.0 mbgl		

GHD

Level 1, 209 Foreshore Drive WA 6530 PO BOX 164 Geraldton WA 6531 T: (08) 9920 9400 F: (08) 9920 9499 E: getmail@ghd.com.au

© GHD 2016

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

\\ghdnet\ghd\AU\Geraldton\Projects\61\34772\WP\17088.docx

Document Status

Rev No.	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
0	S. Petts	D. Edgar	DME	D. Edgar	DME	10/11/2016
1	S.Petts	A. Nagle D. Edgar	PINE IT AN	D. Edgar	Medger	25/11/2016
					- 0	

www.ghd.com

